Concept explainers
Name the three main driveline components that are added to a RWD vehicle to make it a 4WD vehicle.
The three main driveline components that are added to an RWD vehicle to make it a 4WD vehicle.
Answer to Problem 1SA
The three main driveline components that are added to an RWD vehicle to make it a 4WD vehicle are:
- Front differential and axle.
- Transfer case.
- Drive shaft.
Explanation of Solution
In a rear wheel drive (RWD), the axle and differential are placed on the rear side of the vehicle. When it is required to make this RWD vehicle into 4WD vehicle, there arises a need of putting a differential and accordingly axles in the front side of the vehicle also.
The transfer case is the heart of all wheel drive or 4WD type of vehicles. The transfer case receives power from the engine and transmits it to the front and rear axles with the help of drive shafts. The transfer case also serves the purpose of synchronizing the difference of rotation between front and rear wheels of the vehicles.
A drive shaft or a propeller shaft is used to connect and transmit power and torque from the engine to other parts of the drive train. In a situation when relative movement is required or the components of the drive train are difficult to connect directly due to distance, then it becomes essential to employ the drive shaft. To convert a RWD vehicle into a 4WD vehicle, a drive shaft is also needed.
Want to see more full solutions like this?
Chapter 44 Solutions
Mindtap For Erjavec/thompson's Automotive Technology: A Systems Approach, 4 Terms Printed Access Card (mindtap Course List)
- Given the following cross-sections (with units in mm): b) t=2 b=25 h=25 t = 1.5 b=20 b=25 t=2 I t = 1.5 a=10 b=15 h-25 b=15 t=3 T h=25 Figure 3: Cross-sections for problem 2. 1. For each of them, calculate the position of the centroid of area with respect to the given coordinate system and report them in the table below. 2. For each of them, calculate the second moments of inertia I... and I, around their respective centroid of area and report them in the table below. Note: use the parallel axes theorem as much as possible to minimize the need to solve integrals. Centroid position x y box Moment of inertia lyy by a) b) c) d) e)arrow_forwardProblem 1: Analyze the canard-wing combination shown in Fig. 1. The canard and wing are made of the same airfoil section and have AR AR, S = 0.25, and = 0.45% 1. Develop an expression for the moment coefficient about the center of gravity in terms of the shown parameters (, and zg) and the three-dimensional aerodynamic characteristics of the used wing/canard (CL C and CM). 2. What is the range of the cg location for this configuration to be statically stable? You may simplify the problem by neglecting the upwash (downwash) effects between the lifting surfaces and the drag contribution to the moment. You may also assume small angle approximation. Figure 1: Canard-Wing Configuration.arrow_forwardProblem 2: Consider the Boeing 747 jet transport, whose layout is shown in Fig. 2 and has the following characteristics: xoa 0.25, 8 5500/2, b 195.68ft, 27.31ft, AR, 3.57, V = 0.887 Determine the wing and tail contributions to the CM-a curve. You may want to assume CM, reasonable assumptions (e.g., -0.09, 0, -4°. i=0.0°, and i = -2.0°. Make any other 0.9).arrow_forward
- Z Fy = 100 N Fx = 100 N F₂ = 500 N a = 500 mm b = 1000 mm Figure 2: Schematics for problem 3. 1. Draw the moment (M), axial (N), and shear (S) diagrams. Please note that this is a 3D problem and you will have moment (M) and shear (S) along two different axes. That means that you will have a total of 5 diagrams.arrow_forwardAn ideal gas with MW of 29 g/mol, cp = 1.044 kJ/kgK and c₁ = 0.745 kJ/kgK contained in a cylinder-piston assembly initially has a pressure of 175 kPa, a temperature of 22°C, and a volume of 0.30 m³. It is heated slowly at constant volume (process 1-2) until the pressure is doubled. It is then expanded slowly at constant pressure (process 2-3) until the volume is doubled. Draw a figure of the system and the PV diagram showing each state and the path each process takes. Determine the total work done by the system and total heat added (J) in the combined process.arrow_forwardplease explain each method used, thank youarrow_forward
- Determine the resultant loadings acting on the cross sections at points D and E of the frame.arrow_forwardA spring of stiffness factor 98 N/m is pulled through 20 cm. Find the restoring force and compute the mass which should be attached so as to stretch in spring by same amount.arrow_forwardL 2L A M B qarrow_forward
- Need help with the answers I got wrong. The ones marked in red pleasearrow_forwardplease read everything properly... Take 3 4 5 hrs but solve full accurate drawing on bond paper don't use chat gpt etc okk.... Not old solutions just new solvearrow_forwardplease box out or highlight all the answersarrow_forward
- Automotive Technology: A Systems Approach (MindTa...Mechanical EngineeringISBN:9781133612315Author:Jack Erjavec, Rob ThompsonPublisher:Cengage Learning