![Elementary Differential Equations](https://www.bartleby.com/isbn_cover_images/9780470458327/9780470458327_largeCoverImage.gif)
Concept explainers
The general solution of the differential equation.
![Check Mark](/static/check-mark.png)
Answer to Problem 1P
The general solution of the initial value problem is
Explanation of Solution
Formula used:
The variation of parameters for higher order differential equations is
Calculation:
Consider the differential equation
The characteristic polynomial for the equation is
Obtain the root of the equation as follows.
The roots are
Therefore, the complimentary solution of the equation is
A fundamental set of solutions
Then the general solution of the homogeneous equation is
Solving the fundamental set
Compute the latter determinant by minors as follows.
Similarly,
By using the variation of parameters formula for obtain the particular solution.
Similarly,
Therefore, the particular solution is
Hence, the general solution of the initial value problem is
Want to see more full solutions like this?
Chapter 4 Solutions
Elementary Differential Equations
- 1) Find all complex solutions to cos(z) =arrow_forward3) Compute where C is the circle |z― i| = - 1 2 2+1 Po z z - 2)2 dz traversed counterclockwise. Solution: TYPE YOUR SOLUTION HERE! INCLUDE A SKETCH OF THE COM- PLEX PLANE AND THE CURVE C. ALSO, MARK ALL SINGULARITIES OF THE INTEGRAND!arrow_forward2) Consider the function f (z = re²) = e cos(In(r)) + ie¯* sin(ln(r)). Show that is holomorphic at all points except the origin. Also show that =arrow_forward
- 2) Consider the set SL(n, R) consisting of n x n matrices with real entries having de- terminant equal to 1. Prove that SL(n, R) is a group under the operation of matrix multiplication (it is referred to as the Special Linear Group).arrow_forward1) What is the parity of the following permutation? (1389) (24) (567)arrow_forward4.7 Use forward and backward difference approximations of O(h) and a centered difference approximation of O(h²) to estimate the first derivative of the function examined in Prob. 4.5. Evaluate the derivative at x = 2 using a step size of h = 0.2. Compare your results with the true value of the derivative. Interpret your results on the basis of the remainder term of the Taylor series expansion.arrow_forward
- 4.5 Use zero- through third-order Taylor series expansions to predict f(2.5) for f(x) = 25x³- 6x²+7x - 88 using a base point at x = 1. Compute the true percent relative error ε, for each approximation.arrow_forward4.3 Perform the same computation as in Prob. 4.2, but use the Maclaurin series expansion for sin x to estimate sin(л/6). sin x=x- 3x15 3! 5! 7! +arrow_forwardlim 1 x→0x3 L 0 X ln(1+t) dt t4 +4arrow_forward
- Advanced Engineering MathematicsAdvanced MathISBN:9780470458365Author:Erwin KreyszigPublisher:Wiley, John & Sons, IncorporatedNumerical Methods for EngineersAdvanced MathISBN:9780073397924Author:Steven C. Chapra Dr., Raymond P. CanalePublisher:McGraw-Hill EducationIntroductory Mathematics for Engineering Applicat...Advanced MathISBN:9781118141809Author:Nathan KlingbeilPublisher:WILEY
- Mathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,
![Text book image](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)