Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337671729
Author: SERWAY
Publisher: Cengage
expand_more
expand_more
format_list_bulleted
Question
Chapter 43, Problem 5P
(a)
To determine
The fraction of the space.
(b)
To determine
The fraction of the space occupied.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Assume a hydrogen atom is a sphere with diameter 0.100 nm and a hydrogen molecule consists of two such spheres in contact. (a) What fraction of the space in a tank of hydrogen gas at 08C and 1.00 atm is occupied by the hydrogen molecules themselves? (b) What fraction of the space within one hydrogen atom is occupied by its nucleus, of radius 1.20 fm
2.00 mol of the helium is confined to a 2.00-L container at a pressure of 11.0 atm. The atomic mass of helium is 4.00 u, and the conversion between u and kg is 1 u = 1.661 ××10−27 kg.
1)Calculate vrms. (Express your answer to three significant figures.)
Assume that a room at sea level is filled with a gas of nitrogen molecules N2
in thermal equilibrium at -10.0 °C (negative ten degrees Celsius). There are 7 protons and 7
neutrons in the nucleus of a nitrogen atom N. You may take the masses of the proton and the
neutron to be the same, and ignore the mass of the electrons. 1 atm=1.01x105 N/m² ,
h=1.05x10-34 J-s , mp=1.67x10-27 kg, kB = 1.38x10-23 J/K .
a) What is the (particle) number density n according to the ideal gas law?
b) Compare the number density n with the quantum concentration ng at the same
temperature.
c) Is the gas in the classical or quantum regime?
Chapter 43 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 43.1 - Prob. 43.1QQCh. 43.5 - Prob. 43.3QQCh. 43.5 - Which of the following is the correct daughter...Ch. 43.8 - When a nucleus undergoes fission, the two daughter...Ch. 43.8 - Prob. 43.6QQCh. 43.10 - Prob. 43.7QQCh. 43 - Prob. 1PCh. 43 - Prob. 2PCh. 43 - Prob. 3PCh. 43 - Prob. 4P
Ch. 43 - Prob. 5PCh. 43 - Prob. 7PCh. 43 - Prob. 8PCh. 43 - Prob. 9PCh. 43 - Prob. 10PCh. 43 - Prob. 11PCh. 43 - Prob. 13PCh. 43 - Prob. 15PCh. 43 - Prob. 17PCh. 43 - Prob. 18PCh. 43 - Prob. 19PCh. 43 - Prob. 20PCh. 43 - Prob. 21PCh. 43 - Prob. 22PCh. 43 - Prob. 23PCh. 43 - Prob. 24PCh. 43 - Enter the correct nuclide symbol in each open tan...Ch. 43 - Prob. 26PCh. 43 - Prob. 27PCh. 43 - Prob. 28PCh. 43 - Prob. 29PCh. 43 - Prob. 30PCh. 43 - Prob. 32PCh. 43 - Prob. 33PCh. 43 - Prob. 35PCh. 43 - Prob. 37PCh. 43 - Prob. 39PCh. 43 - Prob. 41PCh. 43 - Prob. 42PCh. 43 - Prob. 44PCh. 43 - Prob. 45APCh. 43 - Prob. 46APCh. 43 - Prob. 47APCh. 43 - Prob. 48APCh. 43 - Prob. 49APCh. 43 - Prob. 50APCh. 43 - Prob. 51APCh. 43 - Prob. 52APCh. 43 - As part of his discovery of the neutron in 1932,...Ch. 43 - Prob. 55APCh. 43 - Prob. 56APCh. 43 - Prob. 58APCh. 43 - Prob. 59APCh. 43 - Prob. 60APCh. 43 - Prob. 62APCh. 43 - Prob. 63APCh. 43 - Prob. 64APCh. 43 - Prob. 65APCh. 43 - Prob. 66CP
Knowledge Booster
Similar questions
- Question 12 of 22 Calculate the mass defect of Nitrogen (A = 14, Z = 7). The atomic mass of Nitrogen is 14.00307 u. (Note: The mass of a hydrogen atom is mH = 1.007825 u, and the mass of the neutron is mN = 1.008665 u.) 00 1.21 u 0.53 u 0.25 u 0.11 u zeroarrow_forwardIt may be argued on theoretical grounds that the radius of the hydrogen atom should depend only on the fundamental constants h, e, the electrostatic force constant k = 1/4πℰ0, and m (the electron’s mass). Use dimensional analysis to show that the combination of these factors that yields a result with dimensions of length is h2kme2.arrow_forwardIn an alpha particle scattering experiment, it is determined that the ratio of the cross-sectional area of the target nucleus to that of the atom is 3.30 ✕ 10−9. Determine the radius of the nucleus (in m), if the radius of the atom is 1.40 ✕ 10−10 m.arrow_forward
- Show that the form factor for the charge distribution of model I for a nucleus of radius a is F(q²) = 3{sin(qa/ħ)–(qa/h)cos(qa/h)} (qa/ħ)arrow_forwardShow complete solutions Calculate the value for the mass defect of an atom of the following: Helium – 4 (isotopic mass = 4.002602 u) Lithium – 7 (isotopic mass = 7.016004 u) Beryllium – 9 (isotopic mass = 9.012182 u) Calculate the value for the mass defect of a mole of the following: Boron – 15 (isotopic mass = 15.031088 u) Carbon – 14 (isotopic mass = 14.003241 u) Nitrogen – 17 (isotopic mass = 17.008449 u)arrow_forwardThe number of silicon atoms per m3 is 5 × 1028. This is doped simultaneously with 5 × 1022 atoms per m3 of Arsenic and 5 × 1020 per m3 atoms of Indium. Calculate the number of electrons and holes. Given that nI = 1.5 × 1016m–3. Is the material n-type or p-type?arrow_forward
- In a real or imaginary nucleus of 45X⁹7, (a) how many protons are in the nucleus, (b) how many neutrons are in the nucleus, and (c) how many electrons are in orbit about the nucleus, assuming the atom is electrically neutral? (a) Number (b) Number i (c) Number Units Units Unitsarrow_forwardNuclear matter is extremely dense. (a) Calculate the density, in kg/m³, of A neutrons in a sphere of radius r = ro 4¹/3, where ro = 1.2 x 10-¹5 m. (b) Find the diameter of a sphere of nuclear matter that would have the same mass as the earth. The average radius of the earth is 6.4 x 106 m and the average density of the earth is 5.5 x 10³ kg/m³.arrow_forwardWhat is the density in kg/m3 of the material in the nucleus of the hydrogen atom? The nucleus can be considered to be a sphere of radius 1.2 x 10-15 m, and its mass is 1.67 x 10-27 kg.arrow_forward
- Use the Saha equation to determine the fraction of Hydrogen atoms that are ionized Nu/Ntotal at the center of the Sun, where the temperature is 15.7 million K and the electron number density is ne=6.1x1031 /m³. Don't try to compare your result with actual data, as your result will be lower due to not taking the pressure into account. Since most of the neutral H atoms are in the ground state, use Zrdegeneracy3D2 and, since a H ion is just a proton, Zı=1. Also, use XI=13.6 eV.arrow_forwardBelow about 80 K the specific heat at constant volume for hydrogen gas (H2) is 3/2 k per molecule, but at higher temperatures the specific heat increases to 5/2 k per molecule. What is the distance between the hydrogen nuclei?arrow_forwardAn alpha particle with kinetic energy 11.0 Me V makes a collision with lead nucleus, but it is not "aimed" at the center of the lead nucleus, and has an initial nonzero angular momentum (with respect to the stationary lead nucleus) of magnitude L%=pob, where po is the magnitude of the initial momentum of the alpha particle and b=1.50x10-12m (Assume that the lead nucleus remains stationary and that it may be treated as a point charge. The atomic number of lead is 82. The alpha particle is a helium nucleus, with atomic number 2.) Repeat for b=1. 10×10-13 m. Express your answer in meters. ΑΣφ Submit Request Answer Part C Repeat for b=1.50×10-14 m. Express your answer in meters.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning