
PRECISION MACHINING TECHNOLOGY PACKAGE
3rd Edition
ISBN: 9780357262788
Author: Hoffman
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4.3, Problem 1RQ
List five drill press safety guidelines.
Expert Solution & Answer

To determine
The five drill press safety guidelines.
Explanation of Solution
The drill press machine is used to make hole in the workpiece with the help of a rotating machine tool.
An efficient drilling operation can be ensured by taking some precautions before and during the drilling operations.
The five drill press safety guidelines are as follows:
- During the drilling operation, the operator must use safety glasses.
- After the use of drift key, it must be removed from the spindle.
- One should not touch the spindle, drill, and chuck because they become hot during the operation.
- One must ensure that the spindle is stopped completely before adjusting the machine tool or workpiece otherwise the drill may break.
- One should clamp the workpiece before the operation otherwise it may break the tool or affect the size of hole in the workpiece.
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Problem 7.1
Part A
In (Figure 1), F₁ = 550 lb, F2 = 250 lb, and F3 = 340 lb.
Figure
F
F
B
Part B
Determine the shear force at point C.
Express your answer to three significant figures and include the appropriate units.
Vc=522
?
lb
Submit Previous Answers Request Answer
× Incorrect; Try Again; 15 attempts remaining
Part C
Determine the moment at point C.
Express your answer to three significant figures and include the appropriate units.
1 of 1
Mc = 1867
F
E
D
lb.ft
Submit
Previous Answers Request Answer
× Incorrect; Try Again; 24 attempts remaining
▸
Part D
6 ft-
4 ft-
4 ft-
6 ft
12 ft
Sketch h, for Problem 13.64
13
13.65 In Sketch i the tension on the slack side of the left pulley
is 20% of that on the tight side. The shaft rotates at 1000
rpm. Select a pair of deep-groove roller bearings to sup-
port the shaft for 99% reliability and a life of 20,000 hr.
Assume Eq. (13.83) can be used to account for lubricant
cleanliness. All length dimensions are in millimeters.
b
Z
02
0
y
200
500.
187
100
30°
B
TONE 500 diam
800 N
650 diam
100 N
Sketch i, for Problem 13.65
வ
Problem 2: Consider the rectangular wood beam below. Use E=1.0.
1. Determine the slope at A.
2. Determine the largest deflection between A and B.
Use the elastic curve equation. Show all work. (20%)
3 kN/m
A
2.4 m -
50 mm
AT
150 mm
0000
- B
C
1.2 m→
Chapter 4 Solutions
PRECISION MACHINING TECHNOLOGY PACKAGE
Ch. 4.1 - Upright drill presses are available in _______ and...Ch. 4.1 - List two general types of upright drill press...Ch. 4.1 - Explain how the size of an upright drill press is...Ch. 4.1 - Briefly describe the term sensitive drill press.Ch. 4.1 - Briefly describe a gang drill press and its...Ch. 4.1 - When would a radial-arm drill press most likely be...Ch. 4.1 - Briefly describe a micro drill press and its...Ch. 4.2 - What are the two main materials used to make...Ch. 4.2 - What two types of shanks are commonly found on...Ch. 4.2 - Name three functions of the flutes on a twist...
Ch. 4.2 - Name two types of flute styles for machine...Ch. 4.2 - Prob. 5RQCh. 4.2 - What is the major difference between counterboring...Ch. 4.2 - What must be used to secure a workpiece to an...Ch. 4.2 - What devices are used to elevate a workpiece to...Ch. 4.2 - If 50 parts measuring 1" I" 3" each needed a...Ch. 4.2 - Which would be the best workholding device for...Ch. 4.2 - Which would be the best workholding device for...Ch. 4.2 - Which would be the best workholding device for...Ch. 4.3 - List five drill press safety guidelines.Ch. 4.3 - Briefly define the term cutting speed.Ch. 4.3 - What unit of measure is used to define cutting...Ch. 4.3 - What is feed, and how is feed stated for drill...Ch. 4.3 - Briefly describe two methods for locating hole...Ch. 4.3 - What is spotting and why is it performed?Ch. 4.3 - What is pecking, or peck drilling?Ch. 4.3 - Briefly contrast the speed and feed differences...Ch. 4.3 - What drill press component can be used to control...Ch. 4.3 - Calculate feed depth for a 90-degree countersink...Ch. 4.3 - Calculate feed depth for an 82-degree countersink...Ch. 4.3 - What benefit does tapping on the drill press offer...Ch. 4.3 - How many turns must a 1/4-20 tap be turned into a...Ch. 4.3 - Prob. 14RQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Please give a clear solution.arrow_forwardUSE MATLAB ONLY Turbomachienery . GIven: vx = 185 m/s, flow angle = 60 degrees, R = 0.5, U = 150 m/s, b2 = -a3, a2 = -b3 Find: velocity triangle , a. magnitude of abs vel leaving rotor (m/s) b. flow absolute angles (a1, a2, a3) 3. flow rel angles (b2, b3) d. specific work done e. use code to draw vel. diagram Use this code for plot % plots Velocity Tri. in Ch4 function plotveltri(al1,al2,al3,b2,b3) S1L = [0 1]; V1x = [0 0]; V1s = [0 1*tand(al3)]; S2L = [2 3]; V2x = [0 0]; V2s = [0 1*tand(al2)]; W2s = [0 1*tand(b2)]; U2x = [3 3]; U2y = [1*tand(b2) 1*tand(al2)]; S3L = [4 5]; V3x = [0 0]; V3r = [0 1*tand(al3)]; W3r = [0 1*tand(b3)]; U3x = [5 5]; U3y = [1*tand(b3) 1*tand(al3)]; plot(S1L,V1x,'k',S1L,V1s,'r',... S2L,V2x,'k',S2L,V2s,'r',S2L,W2s,'b',U2x,U2y,'g',... S3L,V3x,'k',S3L,V3r,'r',S3L,W3r,'b',U3x,U3y,'g',...... 'LineWidth',2,'MarkerSize',10),... axis([-1 6 -4 4]), ... title('Velocity Triangle'), ... xlabel('x'),ylarrow_forwardThe wall of a furnace has a thickness of 5 cm and thermal conductivity of 0.7 W/m-°C. The inside surface is heated by convection with a hot gas at 402°C and a heat transfer coefficient of 37 W/m²-°C. The outside surface has an emissivity of 0.8 and is exposed to air at 27°C with a heat transfer coefficient of 20 W/m²-ºC. Assume that the furnace is inside a large room with walls, floor and ceiling at 27°C. Show the thermal circuit and determine the heat flux through the furnace wall. h₁ T₁ k -L T. sur ho Earrow_forward
- Turbomachienery . GIven: vx = 185 m/s, flow angle = 60 degrees, R = 0.5, U = 150 m/s, b2 = -a3, a2 = -b3 Find: velocity triangle , a. magnitude of abs vel leaving rotor (m/s) b. flow absolute angles (a1, a2, a3) 3. flow rel angles (b2, b3) d. specific work done e. use code to draw vel. diagram Use this code for plot % plots Velocity Tri. in Ch4 function plotveltri(al1,al2,al3,b2,b3) S1L = [0 1]; V1x = [0 0]; V1s = [0 1*tand(al3)]; S2L = [2 3]; V2x = [0 0]; V2s = [0 1*tand(al2)]; W2s = [0 1*tand(b2)]; U2x = [3 3]; U2y = [1*tand(b2) 1*tand(al2)]; S3L = [4 5]; V3x = [0 0]; V3r = [0 1*tand(al3)]; W3r = [0 1*tand(b3)]; U3x = [5 5]; U3y = [1*tand(b3) 1*tand(al3)]; plot(S1L,V1x,'k',S1L,V1s,'r',... S2L,V2x,'k',S2L,V2s,'r',S2L,W2s,'b',U2x,U2y,'g',... S3L,V3x,'k',S3L,V3r,'r',S3L,W3r,'b',U3x,U3y,'g',...... 'LineWidth',2,'MarkerSize',10),... axis([-1 6 -4 4]), ... title('Velocity Triangle'), ... xlabel('x'),ylabel('y'), gridarrow_forwardTo save fuel during the heating season it is suggested that glass windows be covered at night with a 1.2 cm layer of polystyrene. Estimate the percent savings in energy and discuss the feasibility of this idea. Show the thermal circuit with and without the insulation panel. Consider a typical case of 0.2 cm thick window glass with inside and outside heat transfer coefficients of 6 and 32 W/m²-ºC. Lg←←Lp h T₁ T。 g kp insulation panelarrow_forwardA plate of thickness L and thermal conductivity k is exposed to a fluid at temperature T1 with a heat transfer coefficient h, on one side and T2 and h₂ on the other side. Determine the one-dimensional temperature distribution in the plate. Assume steady state and constant conductivity. L h h T%2 k Tx1 0xarrow_forward
- Determine the heater capacity needed to maintain the inside temperature of a laboratory chamber at 38°C when placed in a room at 21°C. The chamber is cubical with each side measuring 35 cm. The walls are 1.2 cm thick and are made of polystyrene. The inside and outside heat transfer coefficients are 5 and 22 W/m²-°C.arrow_forward(a) Refer to the above figure .What kind of controller is it ? (b) simplify the block diagramto derive the closed loop transfer function of the system. (C) What are the assumptions thatare needed to make to findthe controller gain ? What arethe value of Kp , Ti and Td ?arrow_forwardLonsider a regenerative gas turbine power plant with two stages of compression and two stages of expansion. The compressor pressure ratio of the compressor is 3. Air enters each stage of compressor at 290 K and esch stage of turbine at 1400 K. The regetierator has an effectiveness of 100%, Determine (a) The enthalpy at stage#2 in KJ/kg (b) The enthalpy at stage in KJ/kg" (c) The cathalpy at stager in KJ/kg* (d) The enthalpy at stage#10 in KJ/kg (c) The mass flow rate of air needed to develop a net power output of 50 MW *For all final answers please enter the integer part only, (ie 1234) and do not include the decimal part and the decimal point No rounding in your calculationarrow_forward
- Consider a regenerative gas turbine power plant with two stages of compression and two stages of expansion. The compressor pressure ratio of the compressor is 3. Air enters each stage of compressor at 290 K and each stage of turbine at 1400 K. The regenerator has an effectiveness of 100%. Determine (a) The enthalpy at stage#2 in KJ/kg⭑ (b) The enthalpy at stage#6 in KJ/kg* (c) The enthalpy at stage#9 in KJ/kg (d) The enthalpy at stage#10 in KJ/kg (e)The mass flow rate of air needed to develop a net power output of 50 MW* *For all final answers please enter the integer part only, (ie 1234) and do not include the decimal part and the decimal point No rounding in your calculation. Compressor stage 1 Regenerator www HX ww 9 Combustor Reheat Intercooler ww Compressor stage 2 Turbine 1 combustor Turbine 2arrow_forwardDesign a proportional derivitivecontroller for a plant orsystemthat satisfies the following specifications : 1. is steady-state error is less than 2 % for a ramp input. 2.) Damping ratio (zeta) is greater than 0.7have determined the 3. Once youvalue of kp and kd, then plotthe response of the compensated(with controller) and uncompensated( without the controller, only the plantsystem using MATLAB.arrow_forwardExample 2 The particle has a mass of 0.5 kg and is confined to move along the smooth horizontal slot due to the rotation of the arm OA. Determine the force of the rod on the particle and the normal force of the slot on the particle when 0 = 30°. The rod is rotating with a constant angular velocity 2 rad/s. Assume the particle contacts only one side of the slot at any instant. B =2 rad/s 0.5 m 0.5(9.81)N r F 30° Narrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Precision Machining Technology (MindTap Course Li...Mechanical EngineeringISBN:9781285444543Author:Peter J. Hoffman, Eric S. Hopewell, Brian JanesPublisher:Cengage LearningRefrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage LearningWelding: Principles and Applications (MindTap Cou...Mechanical EngineeringISBN:9781305494695Author:Larry JeffusPublisher:Cengage Learning
- Automotive Technology: A Systems Approach (MindTa...Mechanical EngineeringISBN:9781133612315Author:Jack Erjavec, Rob ThompsonPublisher:Cengage Learning

Precision Machining Technology (MindTap Course Li...
Mechanical Engineering
ISBN:9781285444543
Author:Peter J. Hoffman, Eric S. Hopewell, Brian Janes
Publisher:Cengage Learning

Refrigeration and Air Conditioning Technology (Mi...
Mechanical Engineering
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:Cengage Learning

Welding: Principles and Applications (MindTap Cou...
Mechanical Engineering
ISBN:9781305494695
Author:Larry Jeffus
Publisher:Cengage Learning

Automotive Technology: A Systems Approach (MindTa...
Mechanical Engineering
ISBN:9781133612315
Author:Jack Erjavec, Rob Thompson
Publisher:Cengage Learning
General Industrial Safety; Author: Jim Pytel;https://www.youtube.com/watch?v=RXtF_vQRebM;License: Standard youtube license