Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 42, Problem 78P
To determine
To calculate:
the time we need to wait such that the number of CC atoms is 1.50 times the number of AA atoms.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Radioactive element AA can decay to either element BB or element CC.The decay depends on chance, but the ratio of the resulting number of BB atoms to the resulting number of CC atoms is always 2/1.The decay has a half-life of 8.00 days.We start with a sample of pure AA. How long must we wait until the number of CC atoms is 1.50 times the number of AAatoms?
Problem A
You have a 3 mol pure sample of an unknown material. After 3.7 h, you discover that 20% has decayed. Determine the half-life, decay
constant, mean life, & initial decay rate. Also determine what the decay rate is at 3.7 h.
T1/2 =
λ= 3.28e-04 x h¹
T=
R₂ =
R=
Problem B
decays/h
decays/h
The decay rate of a radioactive source decreases by 32.8% in 92 h. Determine the half-life, decay constant, & mean life of the source.
T1/2 =
λ =
T=
h-1
Please help me answer the following.
Chapter 42 Solutions
Fundamentals of Physics Extended
Ch. 42 - Prob. 1QCh. 42 - Prob. 2QCh. 42 - Prob. 3QCh. 42 - Prob. 4QCh. 42 - Prob. 5QCh. 42 - Prob. 6QCh. 42 - Prob. 7QCh. 42 - Prob. 8QCh. 42 - Prob. 9QCh. 42 - Prob. 10Q
Ch. 42 - Prob. 11QCh. 42 - Prob. 12QCh. 42 - a Which of the following nuclides are magic:...Ch. 42 - Prob. 14QCh. 42 - Prob. 15QCh. 42 - Prob. 1PCh. 42 - Prob. 2PCh. 42 - A 10.2 MeV Li nucleus is shot directly at the...Ch. 42 - Prob. 4PCh. 42 - Prob. 5PCh. 42 - Prob. 6PCh. 42 - Prob. 7PCh. 42 - Prob. 8PCh. 42 - Prob. 9PCh. 42 - Prob. 10PCh. 42 - Prob. 11PCh. 42 - Prob. 12PCh. 42 - Prob. 13PCh. 42 - Prob. 14PCh. 42 - Prob. 15PCh. 42 - Prob. 16PCh. 42 - Prob. 17PCh. 42 - Prob. 18PCh. 42 - Prob. 19PCh. 42 - Prob. 20PCh. 42 - Prob. 21PCh. 42 - Prob. 22PCh. 42 - Prob. 23PCh. 42 - A penny has a mass of 3.0 g. Calculate the energy...Ch. 42 - Prob. 25PCh. 42 - Prob. 26PCh. 42 - Prob. 27PCh. 42 - Prob. 28PCh. 42 - Prob. 29PCh. 42 - The half-life of a particular radioactive isotope...Ch. 42 - Prob. 31PCh. 42 - Prob. 32PCh. 42 - Prob. 33PCh. 42 - Calculate the mass of a sample of initially pure...Ch. 42 - Prob. 35PCh. 42 - Prob. 36PCh. 42 - Prob. 37PCh. 42 - A dose of 8.60 Ci of a radioactive isotope is...Ch. 42 - Prob. 39PCh. 42 - Prob. 40PCh. 42 - Prob. 41PCh. 42 - Prob. 42PCh. 42 - Prob. 43PCh. 42 - Prob. 44PCh. 42 - Prob. 45PCh. 42 - Prob. 46PCh. 42 - Prob. 47PCh. 42 - Prob. 48PCh. 42 - Prob. 49PCh. 42 - Prob. 50PCh. 42 - Prob. 51PCh. 42 - Prob. 52PCh. 42 - Prob. 53PCh. 42 - Prob. 54PCh. 42 - Prob. 55PCh. 42 - Prob. 56PCh. 42 - Prob. 57PCh. 42 - Prob. 58PCh. 42 - Prob. 59PCh. 42 - Prob. 60PCh. 42 - Prob. 61PCh. 42 - Prob. 62PCh. 42 - Prob. 63PCh. 42 - Prob. 64PCh. 42 - Prob. 65PCh. 42 - Prob. 66PCh. 42 - Prob. 67PCh. 42 - Prob. 68PCh. 42 - Prob. 69PCh. 42 - Prob. 70PCh. 42 - Prob. 71PCh. 42 - Prob. 72PCh. 42 - Prob. 73PCh. 42 - Prob. 74PCh. 42 - Prob. 75PCh. 42 - Prob. 76PCh. 42 - Prob. 77PCh. 42 - Prob. 78PCh. 42 - Prob. 79PCh. 42 - Prob. 80PCh. 42 - Prob. 81PCh. 42 - Prob. 82PCh. 42 - Prob. 83PCh. 42 - Prob. 84PCh. 42 - Prob. 85PCh. 42 - Prob. 86PCh. 42 - Prob. 87PCh. 42 - Characteristic nuclear time is a useful but...Ch. 42 - Prob. 89PCh. 42 - Using a nuclidic chart, write the symbols for a...Ch. 42 - If the unit for atomic mass were defined so that...Ch. 42 - Prob. 92PCh. 42 - Prob. 93PCh. 42 - Prob. 94PCh. 42 - Prob. 95PCh. 42 - Prob. 96PCh. 42 - Prob. 97P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Enter the correct nuclide symbol in each open tan rectangle in Figure P43.25, which shows the sequences of decays in the natural radioactive series starting with the long-lived isotope uranium-235 and ending with the stable nucleus lead-207. Figure P43.25arrow_forward(a) Calculate the radius of 58Ni, one of the most tightly bound stable nuclei. (b) What is the ratio of the radius of 58Ni to that at 258Ha, one of the largest nuclei ever made? Note that the radius of the largest nucleus is still much smaller than ?le size of an atom.arrow_forwardPlease help me answer the following.arrow_forward
- E. The radioactive isotope Gold-198 has a half-life of 64.80 hrs. A sample containing this isotope has an initial activity of 40.0 µCi. Calculate the number of nuclei that will decay in the time interval from 10 hrs to 12 hrs.arrow_forwardTwo radioactive waste products from nuclear reactors are strontium Sr (T12 = 29.1yr) and cesium Cs (712 = 2.06yr). These two species are present initially in a ratio No, sr/Nocs-7.80 x 103. What is the ratio Nsr/Ncs 17 years later? Nu -Number i No Unitsarrow_forwardA radioactive nucleus has half-life T1/2. A sample containing these nuclei has initial activity R0. Calculate the number of nuclei that decay during the interval between the times t1 and t2.arrow_forward
- The cadmium isotope 109Cd has a half-life of 462 days. A sample begins with 1.0 × 1012 109Cd atoms. How many are left after (a) 50 days, (b) 500 days, and (c) 5000 days?arrow_forwardA rear molar from a mammoth skeleton is dated using a measurement of its 14C content. Carbon from the tooth is chemically extracted and formed into benzene. The benzene sample is placed in a shielded chamber. Decays from the sample come at an average rate of 11.5 counts per minute. A modern benzene sample of the exact same size gives 54.9 counts per minute. What is the age of the skeleton?arrow_forwardAn archeologist discovers the bones of a person who appeared to have been dead a very long time. Using carbon dating, they determine that the rate of change of 146C the is 0.259 Bq per gram of carbon for the bones. The rate of change of 146C is 0.270 Bq per gram of carbon for the bones of a person who had just died. How old are the bones? The half life of 146C is 5.73 x 103 y. A. 120 years B. 259 years C. 343 years D. 568 years E. 754 yearsarrow_forward
- Plutonium-239 (atomic number 94) is a by-product of nuclear power plants. It decays via alpha and gamma decay. The half-life for the decay is 24100 years. What is the decay constant for Pu-239 expressed in inverse years and inverse seconds? If the sample of Pu-is measured to have an activity of 150 decays per second today, how many years would it take for the sample to reduce to an activity of 5 decays per second? How many Pu-239 nuclei are in the sample measured today?arrow_forwardCobalt-60 and iodine-131 are used in treatments for some types of cancer. Cobalt-60 decays with a half-life of 5.27 years, emitting beta particles with a maximum energy of 0.32 MeV. Iodine-131 decays with a half-life of8.04 days, emitting beta particles with a maximumenergy of 0.60 MeV.(a) Suppose a fixed small number of moles of each of these isotopes were to be ingested and remain in the body indefinitely. What is the ratio of the number of millisieverts of total lifetime radiation exposure that would be caused by the two radioisotopes?(b) Now suppose that the contact with each of these isotopes is for a fixed short period, such as 1 hour. What is the ratio of millisieverts of radiation exposure for the two in this case?arrow_forwardYou are training for an upcoming Physics Olympics competition. Your coach gives you the following problem and a short time interval to solve it: For radioisotopes with very long half-lives, we cannot measure the half-life in the laboratory, because the activity does not change enough in a reasonable time interval to generate a graph like in the figure below. N(1) Nor No N=Noe The time interval T₁/2 is the half-life of the sample. T1/2 271/2 Ⓡ But suppose you have been given a sample of pure 115In that has been gathered from meteoroids. The sample has a mass of 94.1 g and has a measured activity of 24.5 Bq. Quick! Determine an estimate f the half-life of 1151n (in years). Your future as a Physics Olympic team member depends on your answer! угarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning