CALCULUS+ITS APPLICATIONS
15th Edition
ISBN: 9780137590612
Author: Goldstein
Publisher: RENT PEARS
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4.2, Problem 6E
(a)
To determine
To calculate: The value of
(b)
To determine
To calculate: The value of
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
4. Given the following information determine the appropriate trial solution to find yp. Do not
solve the differential equation. Do not find the constants.
a) (D-4)2(D+ 2)y = 4e-2x
b) (D+ 1)(D² + 10D +34)y = 2e-5x cos 3x
3. Determine the appropriate annihilator for the given F(x).
a) F(x) = 5 cos 2x
b) F(x)=9x2e3x
Tangent planes Find an equation of the plane tangent to the following surfaces at the given points (two planes and two equations).
Chapter 4 Solutions
CALCULUS+ITS APPLICATIONS
Ch. 4.1 - Can a function such as f(x)=53x be written in the...Ch. 4.1 - Solve the equation 7263x=28.Ch. 4.1 - Prob. 1ECh. 4.1 - Prob. 2ECh. 4.1 - Write each expression in Exercises 1-14 in the...Ch. 4.1 - Write each expression in Exercises 1-14 in the...Ch. 4.1 - Write each expression in Exercises 1-14 in the...Ch. 4.1 - Write each expression in Exercises 1-14 in the...Ch. 4.1 - Prob. 7ECh. 4.1 - Write each expression in Exercises 1-14 in the...
Ch. 4.1 - Write each expression in Exercises 1-14 in the...Ch. 4.1 - Prob. 10ECh. 4.1 - Prob. 11ECh. 4.1 - Write each expression in Exercises 1-14 in the...Ch. 4.1 - Prob. 13ECh. 4.1 - Prob. 14ECh. 4.1 - Find a number b such that the function f(x)=32x...Ch. 4.1 - Find b so that 8x/3=bx for all x.Ch. 4.1 - Solve the following equations for x. 52x=52Ch. 4.1 - Solve the following equations for x. 10x=102Ch. 4.1 - Solve the following equations for x....Ch. 4.1 - Solve the following equations for x....Ch. 4.1 - Solve the following equations for x. 101x=100Ch. 4.1 - Solve the following equations for x. 24x=8Ch. 4.1 - Solve the following equations for x. 3(2.7)5x=8.1Ch. 4.1 - Solve the following equations for x....Ch. 4.1 - Solve the following equations for x. (2x+123)2=2Ch. 4.1 - Solve the following equations for x. (32x32)4=3Ch. 4.1 - Solve the following equations for x. 23x=425xCh. 4.1 - Solve the following equations for x. 35x3x3=0Ch. 4.1 - Solve the following equations for x. (1+x)2x52x=0Ch. 4.1 - Prob. 30ECh. 4.1 - Solve the following equations for x. 2x822x=0Ch. 4.1 - Prob. 32ECh. 4.1 - Solve the following equations for x. [Hint: In...Ch. 4.1 - Prob. 34ECh. 4.1 - Solve the following equations for x. [Hint: In...Ch. 4.1 - Prob. 36ECh. 4.1 - The expressions in Exercises 37-42 may be factored...Ch. 4.1 - The expressions in Exercises 37-42 may be factored...Ch. 4.1 - The expressions in Exercises 37-42 may be factored...Ch. 4.1 - The expressions in Exercises 37-42 may be factored...Ch. 4.1 - The expressions in Exercises 37-42 may be factored...Ch. 4.1 - Prob. 42ECh. 4.1 - Prob. 43ECh. 4.1 - Prob. 44ECh. 4.1 - Prob. 45ECh. 4.2 - Solve the following equation for x: e6x=e3.Ch. 4.2 - Differentiate y=(x+ex)4Ch. 4.2 - Show that ddx(3x)|x=01.1 by calculating the slope...Ch. 4.2 - Show that ddx(2.7x)|x=0.99 by calculating the...Ch. 4.2 - In Exercises 3-6, compute the given derivatives...Ch. 4.2 - Prob. 4ECh. 4.2 - Prob. 5ECh. 4.2 - Prob. 6ECh. 4.2 - Write each expression in the form ekx for a...Ch. 4.2 - Write each expression in the form ekx for a...Ch. 4.2 - Write each expression in the form ekx for a...Ch. 4.2 - Write each expression in the form ekx for a...Ch. 4.2 - Write each expression in the form ekx for a...Ch. 4.2 - Prob. 12ECh. 4.2 - Solve each equation for x. e5x=e20Ch. 4.2 - Prob. 14ECh. 4.2 - Solve each equation for x. ex22x=e8Ch. 4.2 - Prob. 16ECh. 4.2 - Solve each equation for x. ex(x21)=0Ch. 4.2 - Solve each equation for x. 4ex(x2+1)=0Ch. 4.2 - Find an equation of the tangent line to the graph...Ch. 4.2 - Prob. 20ECh. 4.2 - Use the first and second derivative rules from...Ch. 4.2 - Prob. 22ECh. 4.2 - Suppose that A=(a,b) is a point on the graph of...Ch. 4.2 - Find the slope-point form of the equation of the...Ch. 4.2 - Differentiate the following functions. y=3ex7xCh. 4.2 - Differentiate the following functions. y=2x+45ex4Ch. 4.2 - Differentiate the following functions. y=xexCh. 4.2 - Differentiate the following functions....Ch. 4.2 - Differentiate the following functions....Ch. 4.2 - Differentiate the following functions....Ch. 4.2 - Differentiate the following functions. y=exx+1Ch. 4.2 - Prob. 32ECh. 4.2 - Differentiate the following functions. y=ex1ex+1Ch. 4.2 - Differentiate the following functions. y=ex+1Ch. 4.2 - The graph of y=xex has one extreme point. Find its...Ch. 4.2 - Prob. 36ECh. 4.2 - Find the point on the graph of y=(1+x2)ex where...Ch. 4.2 - Prob. 38ECh. 4.2 - Find the slope of the tangent line to the curve...Ch. 4.2 - Find the slope of the tangent line to the curve...Ch. 4.2 - Find the equation of the tangent line to the curve...Ch. 4.2 - Find the equation of the tangent line to the curve...Ch. 4.2 - Find the first and second derivatives....Ch. 4.2 - Find the first and second derivatives. f(x)=exxCh. 4.2 - Compute the following derivatives. ddx(5ex)...Ch. 4.2 - Prob. 46ECh. 4.2 - Prob. 47ECh. 4.2 - Prob. 48ECh. 4.2 - Prob. 49ECh. 4.2 - Prob. 50ECh. 4.2 - Prob. 51ECh. 4.2 - Prob. 52ECh. 4.2 - Prob. 53ECh. 4.2 - Prob. 54ECh. 4.2 - Prob. 55ECh. 4.2 - Prob. 56ECh. 4.3 - Differentiate tet2Ch. 4.3 - Differentiate [ e3x(1+e6x) ]12.Ch. 4.3 - Differentiate the following functions. f(x)=e2x+3Ch. 4.3 - Differentiate the following functions. f(x)=e3x2Ch. 4.3 - Differentiate the following functions. f(x)=e4x2xCh. 4.3 - Differentiate the following functions....Ch. 4.3 - Differentiate the following functions. f(x)=eexCh. 4.3 - Differentiate the following functions. f(x)=e1xCh. 4.3 - Differentiate the following functions. f(x)=exCh. 4.3 - Differentiate the following functions. f(x)=ex2+1Ch. 4.3 - Differentiate the following functions. f(x)=7ex7Ch. 4.3 - Differentiate the following functions. f(x)=10ex25Ch. 4.3 - Differentiate the following functions....Ch. 4.3 - Differentiate the following functions....Ch. 4.3 - Differentiate the following functions....Ch. 4.3 - Differentiate the following functions....Ch. 4.3 - Differentiate the following functions....Ch. 4.3 - Differentiate the following functions. f(x)=eeexCh. 4.3 - Differentiate the following functions....Ch. 4.3 - Differentiate the following functions....Ch. 4.3 - Differentiate the following functions. f(x)=ex+1Ch. 4.3 - Differentiate the following functions. f(x)=eexCh. 4.3 - In Exercises 21-26, simplify the function before...Ch. 4.3 - In Exercises 21-26, simplify the function before...Ch. 4.3 - In Exercises 21-26, simplify the function before...Ch. 4.3 - In Exercises 21-26, simplify the function before...Ch. 4.3 - In Exercises 21-26, simplify the function before...Ch. 4.3 - In Exercises 21-26, simplify the function before...Ch. 4.3 - In Exercises 27-32, find the values of x at which...Ch. 4.3 - In Exercises 27-32, find the values of x at which...Ch. 4.3 - In Exercises 27-32, find the values of x at which...Ch. 4.3 - In Exercises 27-32, find the values of x at which...Ch. 4.3 - In Exercises 27-32, find the values of x at which...Ch. 4.3 - In Exercises 27-32, find the values of x at which...Ch. 4.3 - An Investment Portfolio The value of an investment...Ch. 4.3 - Depreciation of Assets The value of the computer t...Ch. 4.3 - The Most Expensive Artwork to Date The highest...Ch. 4.3 - Appreciation of Assets A painting purchased in...Ch. 4.3 - Velocity and Acceleration The velocity of the...Ch. 4.3 - Velocity and Acceleration Suppose the velocity of...Ch. 4.3 - Heights of a Plant The height of a certain plant,...Ch. 4.3 - Heights of a Plant The length of a certain weed,...Ch. 4.3 - Gompertz Growth Curve Let aandb be positive...Ch. 4.3 - Find dydx if y=e(110)ex2.Ch. 4.3 - Size of Tumor In a study, a cancerous tumor was...Ch. 4.3 - Height of a Plant Let f(t) be the function from...Ch. 4.4 - Find lne.Ch. 4.4 - Solve e3x=2 using the natural logarithm function.Ch. 4.4 - Find ln(e).Ch. 4.4 - Find ln(1e2).Ch. 4.4 - If ex=5, Write x in terms of the natural...Ch. 4.4 - If ex=3.2, Write x in terms of the natural...Ch. 4.4 - If lnx=1, Write x using the exponential function.Ch. 4.4 - If lnx=4.5, Write x using the exponential...Ch. 4.4 - Simplify the following expression. lne3Ch. 4.4 - Simplify the following expression. eln4.1Ch. 4.4 - Simplify the following expression. eeln1Ch. 4.4 - Simplify the following expression. ln(e2lne)Ch. 4.4 - Simplify the following expression. ln(lne)Ch. 4.4 - Simplify the following expression. e4ln1Ch. 4.4 - Simplify the following expression. e2lnxCh. 4.4 - Simplify the following expression. exln2Ch. 4.4 - Simplify the following expression. e2ln7Ch. 4.4 - Simplify the following expression. e2ln7Ch. 4.4 - Simplify the following expression. elnx+ln2Ch. 4.4 - Simplify the following expression. eln32lnxCh. 4.4 - Solve the following equations for x. e2x=5Ch. 4.4 - Solve the following equations for x. e13x=4Ch. 4.4 - Solve the following equations for x. ln(4x)=12Ch. 4.4 - Prob. 22ECh. 4.4 - Solve the following equations for x. lnx2=9Ch. 4.4 - Prob. 24ECh. 4.4 - Solve the following equations for x. 6e0.00012x=3Ch. 4.4 - Prob. 26ECh. 4.4 - Solve the following equations for x. ln3x=ln5Ch. 4.4 - Prob. 28ECh. 4.4 - Solve the following equations for x. ln(ln3x)=0Ch. 4.4 - Prob. 30ECh. 4.4 - Solve the following equations for x. 2ex/39=0Ch. 4.4 - Prob. 32ECh. 4.4 - Prob. 33ECh. 4.4 - Prob. 34ECh. 4.4 - Prob. 35ECh. 4.4 - Prob. 36ECh. 4.4 - Solve the following equations for x. 4exe2x=6Ch. 4.4 - Prob. 38ECh. 4.4 - The graph of f(x)=5x+ex is shown in fig. 4. Find...Ch. 4.4 - Prob. 40ECh. 4.4 - Prob. 41ECh. 4.4 - Prob. 42ECh. 4.4 - Prob. 43ECh. 4.4 - Find the x-intercept of y=(x1)2ln(x+1),x1.Ch. 4.4 - In Exercise 45- 46, find the coordinates of each...Ch. 4.4 - In Exercise 45- 46, find the coordinates of each...Ch. 4.4 - Solve for t. e0.05t4e0.06t=0Ch. 4.4 - Solve for t. 4e0.01t3e0.04t=0Ch. 4.4 - Prob. 49ECh. 4.4 - Wind Velocity Under certain geographic conditions,...Ch. 4.4 - Prob. 51ECh. 4.4 - Prob. 52ECh. 4.4 - Prob. 53ECh. 4.4 - Prob. 54ECh. 4.4 - Prob. 55ECh. 4.5 - Differentiate f(x)=1ln(x4+5).Ch. 4.5 - Differentiate f(x)=ln(lnx).Ch. 4.5 - Prob. 3CYUCh. 4.5 - Differentiate the following functions. y=3lnx+ln2Ch. 4.5 - Differentiate the following functions. y=lnxln3Ch. 4.5 - Differentiate the following functions. y=x2lnx2Ch. 4.5 - Differentiate the following functions. y=3lnxxCh. 4.5 - Differentiate the following functions. y=exlnxCh. 4.5 - Differentiate the following functions. y=e1+lnxCh. 4.5 - Differentiate the following functions. y=lnxxCh. 4.5 - Prob. 8ECh. 4.5 - Differentiate the following functions. y=lnx2Ch. 4.5 - Prob. 10ECh. 4.5 - Differentiate the following functions. y=ln(1x)Ch. 4.5 - Prob. 12ECh. 4.5 - Differentiate the following functions. y=ln(3x4x2)Ch. 4.5 - Prob. 14ECh. 4.5 - Differentiate the following functions. y=1lnxCh. 4.5 - Differentiate the following functions. y=lnxln2xCh. 4.5 - Differentiate the following functions. y=lnxln2xCh. 4.5 - Differentiate the following functions. y=(lnx)2Ch. 4.5 - Differentiate the following functions....Ch. 4.5 - Differentiate the following functions....Ch. 4.5 - Find the second derivatives. d2dt2(t2lnt)Ch. 4.5 - Find the second derivatives. d2dt2ln(lnt)Ch. 4.5 - The graph of f(x)=(lnx)/x is shown in Fig.4. Find...Ch. 4.5 - The graph of f(x)=x/(lnx+x) is shown in Fig.5....Ch. 4.5 - Write the equation of the tangent line to the...Ch. 4.5 - The function f(x)=(lnx+1)/x has a relative extreme...Ch. 4.5 - Determine the domain of definition of the given...Ch. 4.5 - Find the equations of the tangent lines to the...Ch. 4.5 - Find the coordinates of the relative extreme point...Ch. 4.5 - Repeat the previous exercise with y=xlnx.Ch. 4.5 - The graphs of y=x+lnx and y=ln2x are shown in...Ch. 4.5 - Prob. 32ECh. 4.5 - Prob. 33ECh. 4.5 - The function y=2x2ln4x (x0) has one minimum point....Ch. 4.5 - A Demand Equation If the demand equation for a...Ch. 4.5 - Total Revenue Suppose that the total revenue...Ch. 4.5 - An Area ProblemFind the maximum area of a...Ch. 4.5 - Analysis of the Effectiveness of an Insect...Ch. 4.6 - Differentiate f(x)=ln[ exx(x+1)6 ].Ch. 4.6 - Use logarithmic differentiation to differentiate...Ch. 4.6 - Simplify the following expressions. ln5+lnxCh. 4.6 - Simplify the following expressions. lnx5lnx3Ch. 4.6 - Simplify the following expressions. 12ln9Ch. 4.6 - Simplify the following expressions. 3ln12+ln16Ch. 4.6 - Simplify the following expressions. ln4+ln6ln12Ch. 4.6 - Simplify the following expressions. ln2lnx+ln3Ch. 4.6 - Simplify the following expressions. e2lnxCh. 4.6 - Simplify the following expressions. 32ln45ln2Ch. 4.6 - Simplify the following expressions. 5lnx12lny+3lnzCh. 4.6 - Simplify the following expressions. elnx2+3lnyCh. 4.6 - Simplify the following expressions. lnxlnx2+lnx4Ch. 4.6 - Prob. 12ECh. 4.6 - Simplify the following expressions. Which is...Ch. 4.6 - Simplify the following expressions. Which is...Ch. 4.6 - Evaluate the given expressions. Use ln2=.69 and...Ch. 4.6 - Evaluate the given expressions. Use ln2=.69 and...Ch. 4.6 - Evaluate the given expressions. Use ln2=.69 and...Ch. 4.6 - Prob. 18ECh. 4.6 - Which of the following is the same as 4ln2x? a....Ch. 4.6 - Prob. 20ECh. 4.6 - Which of the following is the same as ln8x2ln2x?...Ch. 4.6 - Which of the following is the same as ln9x2? a....Ch. 4.6 - Solve the given equation for x. lnxlnx2+ln3=0Ch. 4.6 - Solve the given equation for x. lnx2ln3=0Ch. 4.6 - Solve the given equation for x. lnx42lnx=1Ch. 4.6 - Solve the given equation for x. lnx2ln2x+1=0Ch. 4.6 - Solve the given equation for x. (lnx)21=0Ch. 4.6 - Solve the given equation for x. 3lnxln3x=0Ch. 4.6 - Solve the given equation for x. lnx=lnxCh. 4.6 - Solve the given equation for x. 2(lnx)2+lnx1=0Ch. 4.6 - Solve the given equation for x. ln(x+1)ln(x2)=1Ch. 4.6 - Solve the given equation for x....Ch. 4.6 - Differentiate. y=ln[(x+5)(2x1)(4x)]Ch. 4.6 - Differentiate. y=ln[(x+1)(2x+1)(3x+1)]Ch. 4.6 - Differentiate. y=ln[(1+x)2(2+x)3(3+x)4]Ch. 4.6 - Differentiate. y=ln[e2x(x3+1)(x4+5x)]Ch. 4.6 - Differentiate. y=ln[xex2+1]Ch. 4.6 - Prob. 38ECh. 4.6 - Differentiate. y=ln(x+1)4ex1Ch. 4.6 - Differentiate. y=ln(x+1)4(x3+2)x1Ch. 4.6 - Prob. 41ECh. 4.6 - Prob. 42ECh. 4.6 - Use logarithmic differentiation to differentiate...Ch. 4.6 - Use logarithmic differentiation to differentiate...Ch. 4.6 - Use logarithmic differentiation to differentiate...Ch. 4.6 - Use logarithmic differentiation to differentiate...Ch. 4.6 - Prob. 47ECh. 4.6 - Use logarithmic differentiation to differentiate...Ch. 4.6 - Use logarithmic differentiation to differentiate...Ch. 4.6 - Use logarithmic differentiation to differentiate...Ch. 4.6 - Prob. 51ECh. 4.6 - Prob. 52ECh. 4.6 - Prob. 53ECh. 4.6 - Prob. 54ECh. 4 - State as many laws of exponents as you can recall.Ch. 4 - Prob. 2FCCECh. 4 - Prob. 3FCCECh. 4 - Prob. 4FCCECh. 4 - Prob. 5FCCECh. 4 - Prob. 6FCCECh. 4 - Prob. 7FCCECh. 4 - Prob. 8FCCECh. 4 - Prob. 9FCCECh. 4 - Prob. 10FCCECh. 4 - Prob. 11FCCECh. 4 - Prob. 12FCCECh. 4 - Prob. 13FCCECh. 4 - Prob. 14FCCECh. 4 - Calculate the following. 274/3Ch. 4 - Calculate the following. 41.5Ch. 4 - Prob. 3RECh. 4 - Prob. 4RECh. 4 - Calculate the following. (25/7)14/5Ch. 4 - Prob. 6RECh. 4 - Prob. 7RECh. 4 - Calculate the following. 40.240.3Ch. 4 - Simplify the following. (ex2)3Ch. 4 - Simplify the following. e5xe2xCh. 4 - Simplify the following. e3xexCh. 4 - Simplify the following. 2x3xCh. 4 - Simplify the following. (e8x+7e2x)e3xCh. 4 - Simplify the following. e5x/2e3xexCh. 4 - Solve the following equations for x. e3x=e12Ch. 4 - Solve the following equations for x. ex2x=e2Ch. 4 - Solve the following equations for x. (exe2)3=e9Ch. 4 - Solve the following equations for x. e5xe4=eCh. 4 - Differntiate the following functions. y=10e7xCh. 4 - Differntiate the following functions. y=exCh. 4 - Differentiate the following functions. y=xex2Ch. 4 - Differentiate the following functions. y=ex+1x1Ch. 4 - Differntiate the following functions. y=eexCh. 4 - Differntiate the following functions. y=(x+1)e2xCh. 4 - Differentiate the following functions....Ch. 4 - Differentiate the following functions. y=xeCh. 4 - The graph of the functions f(x)=ex24x2 is shown in...Ch. 4 - Show that the function in Fig. 1 has a relative...Ch. 4 - Solve the following equations for t....Ch. 4 - Solve the following equations for t. et8e0.02t=0Ch. 4 - Solve the equation 42x=ex. [Hint: Express 2x as an...Ch. 4 - Solve the equation 3x=2ex. [Hint: Express 3x as an...Ch. 4 - Find the points on the graph of y=ex where the...Ch. 4 - Find the points on the graph y=ex+e2x where the...Ch. 4 - Determine the intervals where the function...Ch. 4 - Determine the intervals where the function...Ch. 4 - Find the equation of the tangent line to the graph...Ch. 4 - Show that the tangent lines to the graph of...Ch. 4 - Simplify the following expressions. e(ln5)/2Ch. 4 - Simplify the following expressions. eln(x2)Ch. 4 - Simplify the following expressions. lnx2lnx3Ch. 4 - Simplify the following expressions. e2ln2Ch. 4 - Simplify the following expressions. e5ln1Ch. 4 - Simplify the following expressions. [elnx]2Ch. 4 - Solve the following equations for t. tlnt=eCh. 4 - Solve the following equations for t. ln(ln3t)=0Ch. 4 - Solve the following equations for t. 3e2t=15Ch. 4 - Solve the following equations for t. 3et/212=0Ch. 4 - Solve the following equations for t. 2lnt=5Ch. 4 - Solve the following equations for t. 2e0.3t=1Ch. 4 - Differentiate the following functions....Ch. 4 - Differentiate the following functions. y=xlnxCh. 4 - Differentiate the following functions. y=ln(5x7)Ch. 4 - Differentiate the following functions. y=ln(9x)Ch. 4 - Differentiate the following functions. y=(lnx)2Ch. 4 - Differentiate the following functions. y=(xlnx)3Ch. 4 - Differentiate the following functions....Ch. 4 - Differentiate the following functions....Ch. 4 - Differentiate the following functions. y=xlnxxCh. 4 - Differentiate the following functions. y=e2ln(x+1)Ch. 4 - Differentiate the following functions. y=ln(lnx)Ch. 4 - Differentiate the following functions. y=1lnxCh. 4 - Differentiate the following functions. y=exlnxCh. 4 - Differentiate the following functions. y=ln(x2+ex)Ch. 4 - Differentiate the following functions....Ch. 4 - Differentiate the following functions. y=ln|2x+1|Ch. 4 - Differentiate the following functions. y=ln(ex2x)Ch. 4 - Differentiate the following functions. y=lnx3+3x23Ch. 4 - Differentiate the following functions. y=ln(2x)Ch. 4 - Differentiate the following functions....Ch. 4 - Differentiate the following functions. y=ln|x1|Ch. 4 - Differentiate the following functions....Ch. 4 - Differentiate the following functions. y=ln(1ex)Ch. 4 - Differentiate the following functions....Ch. 4 - Use logarithmic differentiation to differentiate...Ch. 4 - Use logarithmic differentiation to differentiate...Ch. 4 - Use logarithmic differentiation to differentiate...Ch. 4 - Use logarithmic differentiation to differentiate...Ch. 4 - Use logarithmic differentiation to differentiate...Ch. 4 - Prob. 80RECh. 4 - Prob. 81RECh. 4 - Prob. 82RECh. 4 - Use logarithmic differentiation to differentiate...Ch. 4 - Prob. 84RECh. 4 - Prob. 85RECh. 4 - Prob. 86RECh. 4 - Prob. 87RECh. 4 - Health Expenditures The health expenditures (in...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- Vectors u and v are shown on the graph.Part A: Write u and v in component form. Show your work. Part B: Find u + v. Show your work.Part C: Find 5u − 2v. Show your work.arrow_forwardVectors u = 6(cos 60°i + sin60°j), v = 4(cos 315°i + sin315°j), and w = −12(cos 330°i + sin330°j) are given. Use exact values when evaluating sine and cosine.Part A: Convert the vectors to component form and find −7(u • v). Show every step of your work.Part B: Convert the vectors to component form and use the dot product to determine if u and w are parallel, orthogonal, or neither. Justify your answer.arrow_forwardSuppose that one factory inputs its goods from two different plants, A and B, with different costs, 3 and 7 each respective. And suppose the price function in the market is decided as p(x, y) = 100 - x - y where x and y are the demand functions and 0 < x, y. Then as x = y= the factory can attain the maximum profit,arrow_forward
- f(x) = = x - 3 x²-9 f(x) = {x + 1 x > 3 4 x < 3 -10 5 10 5 5. 10 5- 07. 10 -10 -5 0 10 5 -101 :: The function has a “step" or "jump" discontinuity at x = 3 where f(3) = 7. :: The function has a value of f (3), a limit as x approaches 3, but is not continuous at x = 3. :: The function has a limit as x approaches 3, but the function is not defined and is not continuous at x = 3. :: The function has a removable discontinuity at x=3 and an infinite discontinuity at x= -3.arrow_forwardCalculus lll May I please have the solutions for the following examples? Thank youarrow_forwardCalculus lll May I please have the solutions for the following exercises that are blank? Thank youarrow_forward
- The graph of 2(x² + y²)² = 25 (x²-y²), shown in the figure, is a lemniscate of Bernoulli. Find the equation of the tangent line at the point (3,1). -10 Write the expression for the slope in terms of x and y. slope = 4x³ + 4xy2-25x 2 3 4x²y + 4y³ + 25y Write the equation for the line tangent to the point (3,1). LV Q +arrow_forwardFind the equation of the tangent line at the given value of x on the curve. 2y3+xy-y= 250x4; x=1 y=arrow_forwardFind the equation of the tangent line at the given point on the curve. 3y² -√x=44, (16,4) y=] ...arrow_forward
- For a certain product, cost C and revenue R are given as follows, where x is the number of units sold in hundreds. Cost: C² = x² +92√x+56 Revenue: 898(x-6)² + 24R² = 16,224 dC a. Find the marginal cost at x = 6. dx The marginal cost is estimated to be $ ☐ . (Do not round until the final answer. Then round to the nearest hundredth as needed.)arrow_forwardThe graph of 3 (x² + y²)² = 100 (x² - y²), shown in the figure, is a lemniscate of Bernoulli. Find the equation of the tangent line at the point (4,2). АУ -10 10 Write the expression for the slope in terms of x and y. slope =arrow_forwardUse a geometric series to represent each of the given functions as a power series about x=0, and find their intervals of convergence. a. f(x)=5/(3-x) b. g(x)= 3/(x-2)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Finding Local Maxima and Minima by Differentiation; Author: Professor Dave Explains;https://www.youtube.com/watch?v=pvLj1s7SOtk;License: Standard YouTube License, CC-BY