Generalized Mean Value Theorem Suppose the functions f and g are continuous on ⌈ a, b ⌉ and differentiable on ( a, b ) , where g ( a ) ≠ g ( b ) . Then there is a point c in ( a , b ) at which f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( c ) g ′ ( c ) . This result is known as the Generalized (or Cauchy’s) Mean Value Theorem. a. If g ( x ) = x , then show that the Generalized Mean Value Theorem reduces to the Mean Value Theorem. b. Suppose f ( x ) = x 2 − l, g ( x ) = 4 x + 2, and [ a , b ] = [0, 1]. Find a value of c satisfying the Generalized Mean Value Theorem.
Generalized Mean Value Theorem Suppose the functions f and g are continuous on ⌈ a, b ⌉ and differentiable on ( a, b ) , where g ( a ) ≠ g ( b ) . Then there is a point c in ( a , b ) at which f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( c ) g ′ ( c ) . This result is known as the Generalized (or Cauchy’s) Mean Value Theorem. a. If g ( x ) = x , then show that the Generalized Mean Value Theorem reduces to the Mean Value Theorem. b. Suppose f ( x ) = x 2 − l, g ( x ) = 4 x + 2, and [ a , b ] = [0, 1]. Find a value of c satisfying the Generalized Mean Value Theorem.
Solution Summary: The author explains the Generalized Mean Value Theorem when reduce to the Mean Valuation Theory for the given function. The function is g(x)=x.
Generalized Mean Value Theorem Suppose the functions f and g are continuous on ⌈a, b⌉ and differentiable on (a, b), where g(a) ≠ g(b). Then there is a point c in (a, b) at which
f
(
b
)
−
f
(
a
)
g
(
b
)
−
g
(
a
)
=
f
′
(
c
)
g
′
(
c
)
.
This result is known as the Generalized (or Cauchy’s) Mean Value Theorem.
a. If g(x) = x, then show that the Generalized Mean Value Theorem reduces to the Mean Value Theorem.
b. Suppose f(x) = x2 − l, g(x) = 4x + 2, and [a, b] = [0, 1]. Find a value of c satisfying the Generalized Mean Value Theorem.
Consider the function f(x) = x²-1.
(a) Find the instantaneous rate of change of f(x) at x=1 using the definition of the derivative.
Show all your steps clearly.
(b) Sketch the graph of f(x) around x = 1. Draw the secant line passing through the points on the
graph where x 1 and x->
1+h (for a small positive value of h, illustrate conceptually). Then,
draw the tangent line to the graph at x=1. Explain how the slope of the tangent line relates to the
value you found in part (a).
(c) In a few sentences, explain what the instantaneous rate of change of f(x) at x = 1 represents in
the context of the graph of f(x). How does the rate of change of this function vary at different
points?
1. The graph of ƒ is given. Use the graph to evaluate each of the following values. If a value does not exist,
state that fact.
и
(a) f'(-5)
(b) f'(-3)
(c) f'(0)
(d) f'(5)
2. Find an equation of the tangent line to the graph of y = g(x) at x = 5 if g(5) = −3 and g'(5)
=
4.
-
3. If an equation of the tangent line to the graph of y = f(x) at the point where x 2 is y = 4x — 5, find ƒ(2)
and f'(2).
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.