
EBK ESSENTIAL UNIVERSITY PHYSICS, VOLUM
4th Edition
ISBN: 9780135272947
Author: Wolfson
Publisher: VST
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4.2, Problem 4.2GI
A nonzero net force acts on an object. Which of the following is true? (a) the object necessarily moves in the same direction as the net force; (b) under some circumstances the object could move in the same direction as the net force, but in other situations it might not; (c) the object cannot move in the same direction as the net force
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
An m = 69.0-kg person running at an initial speed of v = 4.50 m/s jumps onto an M = 138-kg cart initially at rest (figure below). The person slides on the cart's top surface and finally comes to rest relative to the cart. The coefficient of kinetic friction between the person and the cart is
0.440. Friction between the cart and ground can be ignored. (Let the positive direction be to the right.)
m
M
(a) Find the final velocity of the person and cart relative to the ground. (Indicate the direction with the sign of your answer.)
m/s
(b) Find the friction force acting on the person while he is sliding across the top surface of the cart. (Indicate the direction with the sign of your answer.)
N
(c) How long does the friction force act on the person?
S
(d) Find the change in momentum of the person. (Indicate the direction with the sign of your answer.)
N.S
Find the change in momentum of the cart. (Indicate the direction with the sign of your answer.)
N.S
(e) Determine the displacement of the…
Small ice cubes, each of mass 5.60 g, slide down a frictionless track in a steady stream, as shown in the figure below. Starting from rest, each cube moves down through a net vertical distance of h = 1.50 m and leaves the bottom end of the track at an angle of 40.0° above the horizontal.
At the highest point of its subsequent trajectory, the cube strikes a vertical wall and rebounds with half the speed it had upon impact. If 10 cubes strike the wall per second, what average force is exerted upon the wall?
N ---direction--- ▾
---direction---
to the top
to the bottom
to the left
to the right
1.50 m
40.0°
The magnitude of the net force exerted in the x direction on a 3.00-kg particle varies in time as shown in the figure below.
F(N)
4
3
A
2
t(s)
1
2 3
45
(a) Find the impulse of the force over the 5.00-s time interval.
==
N⚫s
(b) Find the final velocity the particle attains if it is originally at rest.
m/s
(c) Find its final velocity if its original velocity is -3.50 î m/s.
V₁
m/s
(d) Find the average force exerted on the particle for the time interval between 0 and 5.00 s.
=
avg
N
Chapter 4 Solutions
EBK ESSENTIAL UNIVERSITY PHYSICS, VOLUM
Ch. 4.2 - A curved barrier lies on a horizontal tabletop, as...Ch. 4.2 - A nonzero net force acts on an object. Which of...Ch. 4.4 - A popular childrens book explains the...Ch. 4.5 - For each of the following situations, would the...Ch. 4.6 - The figure shows two blocks with two forces acting...Ch. 4.6 - (1) Would the answer to (a) in Example 4.5 change...Ch. 4 - Distinguish the Aristotelian and Galilean/New...Ch. 4 - A ball bounces off a wall with the same speed it...Ch. 4 - We often use the term inertia to describe human...Ch. 4 - Does a body necessarily move in the direction of...
Ch. 4 - A truck crashes into a stalled car. A student...Ch. 4 - A barefoot astronaut kicks a ball, hard, across a...Ch. 4 - In paddling a canoe, you push water backward with...Ch. 4 - Is it possible for a nonzero net force to act on...Ch. 4 - As your plane accelerates down the runway, you...Ch. 4 - A driver tells passengers to buckle their...Ch. 4 - Section 4.2 Newtons First and Second Laws A subway...Ch. 4 - Prob. 12ECh. 4 - A small plane accelerates down the runway at 7.2...Ch. 4 - A car leaves the road traveling at 110 km/h and...Ch. 4 - Kinesin is a motor protein responsible for moving...Ch. 4 - Starting from rest and undergoing constant...Ch. 4 - In an egg-dropping contest, a student encases an...Ch. 4 - In a front-end collision, a 1300-kg car with...Ch. 4 - Show that the units of acceleration can be written...Ch. 4 - Your spaceship crashes on one of the Suns planets....Ch. 4 - Your friend can barely lift a 35-kg concrete block...Ch. 4 - A cereal box says net weight 340 grams. Whats the...Ch. 4 - Youre a safely engineer for a bridge spanning the...Ch. 4 - The gravitational acceleration at the...Ch. 4 - A 50-kg parachutist descends at a steady 40 km/h....Ch. 4 - A 930-kg motorboat accelerates away from a dock at...Ch. 4 - An elevator accelerates downward at 2.4 m/s2. What...Ch. 4 - At 560 metric tons, the Airbus A-380 is the worlds...Ch. 4 - Find an expression for the thrust (force) of a...Ch. 4 - You slop into an elevator, and it accelerates to a...Ch. 4 - What upward gravitational force does a 5600-kg...Ch. 4 - Your friends mass is 65 kg. If she jumps off a...Ch. 4 - What force is necessary to stretch a spring 48 cm,...Ch. 4 - A 35-N force is applied to a spring with spring...Ch. 4 - A spring with spring constant k = 340 N/m is used...Ch. 4 - Prob. 36ECh. 4 - Prob. 37ECh. 4 - Prob. 38ECh. 4 - Prob. 39ECh. 4 - Prob. 40ECh. 4 - Prob. 41ECh. 4 - Example 4.3: In the 2015 film The Martian, actor...Ch. 4 - Prob. 43ECh. 4 - A 166-g hockey puck is gliding across the ice at...Ch. 4 - An airplane encounters sudden turbulence, and you...Ch. 4 - A 74-kg tree surgeon rides a cherry picker lift to...Ch. 4 - A dancer executes a vertical jump during which the...Ch. 4 - Find expressions for the force needed to bring an...Ch. 4 - An elevator moves upward at 5.2 m/s. Whats its...Ch. 4 - A 2.50-kg object is moving along the x-axis at...Ch. 4 - Blocks of 1.0, 2.0, and 3.0 kg are lined up on a...Ch. 4 - A child pulls an 11-kg wagon with a horizontal...Ch. 4 - Biophysicists use an arrangement of laser beams...Ch. 4 - A force F is applied to a spring of spring...Ch. 4 - A 22(M)-kg airplane pulls two gliders, the first...Ch. 4 - A biologist is studying the growth of rats on the...Ch. 4 - A small car, with mass 945 kg, is stuck on...Ch. 4 - A 2.0-kg mass and a 3.0-kg mass are on a...Ch. 4 - Youre an automotive engineer designing the crumple...Ch. 4 - Frogs tongues dart out to catch insects, with...Ch. 4 - Two large crates, with masses 640 kg and 490 kg,...Ch. 4 - Your engineering firm is asked to specify the...Ch. 4 - With its fuel tanks half full, an F-35A jet...Ch. 4 - Two springs have the same unstretched length but...Ch. 4 - Although we usually write Newtons second law for...Ch. 4 - A railroad car is being pulled beneath a grain...Ch. 4 - A block 20% more massive than you hangs from a...Ch. 4 - Figure 4.27 shows vertical accelerometer data from...Ch. 4 - A hockey stick is in contact with a 165-g puck for...Ch. 4 - After parachuting through the Martian atmosphere,...Ch. 4 - Your airplane is caught in a brief, violent...Ch. 4 -
A hot-air balloon and its basket are accelerating...Ch. 4 - Two masses are joined by a massless string. A 30-N...Ch. 4 - A mass M hangs from a uniform rope of length L and...Ch. 4 - Jerk is the rate of change of acceleration, and...Ch. 4 - Laptop computers are equipped with accelerometers...Ch. 4 - Laptop computers are equipped with accelerometers...Ch. 4 - Laptop computers are equipped with accelerometers...Ch. 4 - Laptop computers are equipped with accelerometers...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Determine [OH], [H+], and the pH of each of the following solutions. a. 1.0 M KCl b. 1.0 M KC2H3O2
Chemistry
Fibrous connective tissue consists of ground substance and fibers that provide strength, support, and flexibili...
Human Biology: Concepts and Current Issues (8th Edition)
Why is petroleum jelly used in the hanging-drop procedure?
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
Cosmic Perspective Fundamentals
The data were obtained from a use-dilution test comparing four disinfectants against Salmonella choleraesuis. G...
Microbiology: An Introduction
The number of named species is about ________, but the actual number of species on Earth is estimated to be abo...
Biology: Life on Earth with Physiology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- ••63 SSM www In the circuit of Fig. 27-65, 8 = 1.2 kV, C = 6.5 µF, R₁ S R₂ R3 800 C H R₁ = R₂ = R3 = 0.73 MQ. With C completely uncharged, switch S is suddenly closed (at t = 0). At t = 0, what are (a) current i̟ in resistor 1, (b) current 2 in resistor 2, and (c) current i3 in resistor 3? At t = ∞o (that is, after many time constants), what are (d) i₁, (e) i₂, and (f) iz? What is the potential difference V2 across resistor 2 at (g) t = 0 and (h) t = ∞o? (i) Sketch V2 versus t between these two extreme times. Figure 27-65 Problem 63.arrow_forwardThor flies by spinning his hammer really fast from a leather strap at the end of the handle, letting go, then grabbing it and having it pull him. If Thor wants to reach escape velocity (velocity needed to leave Earth’s atmosphere), he will need the linear velocity of the center of mass of the hammer to be 11,200 m/s. Thor's escape velocity is 33532.9 rad/s, the angular velocity is 8055.5 rad/s^2. While the hammer is spinning at its maximum speed what impossibly large tension does the leather strap, which the hammer is spinning by, exert when the hammer is at its lowest point? the hammer has a total mass of 20.0kg.arrow_forwardIf the room’s radius is 16.2 m, at what minimum linear speed does Quicksilver need to run to stay on the walls without sliding down? Assume the coefficient of friction between Quicksilver and the wall is 0.236.arrow_forward
- In the comics Thor flies by spinning his hammer really fast from a leather strap at the end of the handle, letting go, then grabbing it and having it pull him. If Thor wants to reach escape velocity (velocity needed to leave Earth’s atmosphere), he will need the linear velocity of the center of mass of the hammer to be 11,200 m/s. A) If the distance from the end of the strap to the center of the hammer is 0.334 m, what angular velocity does Thor need to spin his hammer at to reach escape velocity? b) If the hammer starts from rest what angular acceleration does Thor need to reach that angular velocity in 4.16 s? c) While the hammer is spinning at its maximum speed what impossibly large tension does the leather strap, which the hammer is spinning by, exert when the hammer is at its lowest point? The hammer has a total mass of 20.0kg.arrow_forwardThe car goes from driving straight to spinning at 10.6 rev/min in 0.257 s with a radius of 12.2 m. The angular accleration is 4.28 rad/s^2. During this flip Barbie stays firmly seated in the car’s seat. Barbie has a mass of 58.0 kg, what is her normal force at the top of the loop?arrow_forwardConsider a hoop of radius R and mass M rolling without slipping. Which form of kinetic energy is larger, translational or rotational?arrow_forward
- A roller-coaster vehicle has a mass of 571 kg when fully loaded with passengers (see figure). A) If the vehicle has a speed of 22.5 m/s at point A, what is the force of the track on the vehicle at this point? B) What is the maximum speed the vehicle can have at point B, in order for gravity to hold it on the track?arrow_forwardThis one wheeled motorcycle’s wheel maximum angular velocity was about 430 rev/min. Given that it’s radius was 0.920 m, what was the largest linear velocity of the monowheel?The monowheel could not accelerate fast or the rider would start spinning inside (this is called "gerbiling"). The maximum angular acceleration was 10.9 rad/s2. How long, in seconds, would it take it to hit maximum speed from rest?arrow_forwardIf points a and b are connected by a wire with negligible resistance, find the magnitude of the current in the 12.0 V battery.arrow_forward
- Consider the two pucks shown in the figure. As they move towards each other, the momentum of each puck is equal in magnitude and opposite in direction. Given that v kinetic energy of the system is converted to internal energy? 30.0° 130.0 = green 11.0 m/s, and m blue is 25.0% greater than m 'green' what are the final speeds of each puck (in m/s), if 1½-½ t thearrow_forwardConsider the blocks on the curved ramp as seen in the figure. The blocks have masses m₁ = 2.00 kg and m₂ = 3.60 kg, and are initially at rest. The blocks are allowed to slide down the ramp and they then undergo a head-on, elastic collision on the flat portion. Determine the heights (in m) to which m₁ and m2 rise on the curved portion of the ramp after the collision. Assume the ramp is frictionless, and h 4.40 m. m2 = m₁ m hm1 hm2 m iarrow_forwardA 3.04-kg steel ball strikes a massive wall at 10.0 m/s at an angle of 0 = 60.0° with the plane of the wall. It bounces off the wall with the same speed and angle (see the figure below). If the ball is in contact with the wall for 0.234 s, what is the average force exerted by the wall on the ball? magnitude direction ---Select--- ✓ N xarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Newton's First Law of Motion: Mass and Inertia; Author: Professor Dave explains;https://www.youtube.com/watch?v=1XSyyjcEHo0;License: Standard YouTube License, CC-BY