Bundle: Physics For Scientists And Engineers With Modern Physics, 10th + Webassign Printed Access Card For Serway/jewett's Physics For Scientists And Engineers, 10th, Multi-term
10th Edition
ISBN: 9781337888516
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 42, Problem 29P
To determine
The energy gap for the semiconductor.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The longest wavelength of radiation absorbed by a certain semiconductor is 0.512 μm. Calculate the energy gap for this semiconductor.
In a certain semiconductor, the valence band can be approximated by the function E(k) = Eo ak² and the
conduction band can be described by the function E(k)= E₁ + 3k². Here E(k) is the electron energy and k is the
wavevector. Plot E(k) for the two bands. What is the bandgap of this semiconductor? Is this a direct
or indirect bandgap semiconductor?
Plot the temperature dependence of the depletion width of the semiconductor-metal junction
whose capacitance-voltage data at room temperature is given below. The dielectric constant of the
SC material is 10. Use data extrapolation if you feel necessary. Clearly state your assumptions.
75
70
65
60
CAPACITANCE 55
(pF)
50
45
40
35
REVERSE BIAS FORWARD BIAS
30
-6
-4
-3
-2
-1
2
VOLTAGE (M)
Chapter 42 Solutions
Bundle: Physics For Scientists And Engineers With Modern Physics, 10th + Webassign Printed Access Card For Serway/jewett's Physics For Scientists And Engineers, 10th, Multi-term
Ch. 42.1 - For each of the following atoms or molecules,...Ch. 42.2 - Prob. 42.2QQCh. 42.2 - Prob. 42.3QQCh. 42 - Prob. 1PCh. 42 - Prob. 2PCh. 42 - Prob. 3PCh. 42 - Prob. 4PCh. 42 - Prob. 5PCh. 42 - The photon frequency that would be absorbed by the...Ch. 42 - Prob. 8P
Ch. 42 - Prob. 9PCh. 42 - Prob. 10PCh. 42 - (a) In an HCl molecule, take the Cl atom to be the...Ch. 42 - Prob. 12PCh. 42 - Prob. 13PCh. 42 - Prob. 14PCh. 42 - Prob. 15PCh. 42 - Prob. 16PCh. 42 - Prob. 17PCh. 42 - Prob. 19PCh. 42 - Prob. 21PCh. 42 - Prob. 22PCh. 42 - Prob. 23PCh. 42 - Prob. 24PCh. 42 - Prob. 25PCh. 42 - Prob. 26PCh. 42 - Prob. 27PCh. 42 - Prob. 28PCh. 42 - Prob. 29PCh. 42 - Prob. 30PCh. 42 - Prob. 32PCh. 42 - Prob. 33PCh. 42 - Prob. 35PCh. 42 - Prob. 36APCh. 42 - Prob. 37APCh. 42 - Prob. 39APCh. 42 - Prob. 40APCh. 42 - As an alternative to Equation 42.1, another useful...
Knowledge Booster
Similar questions
- A light-emitting diode made of the semiconductor GaAsP gives off red light (λ= 650 nm). Determine the energy gap for this semiconductor. .arrow_forwardThe plot of the E field with respect to x in a metal semiconductor junction at 300K is shown in the figure. The semiconductor is Si and E(0)=-2x10* V/cm and xo-0.2x10 cm. What is the semiconductor type and built in potential value. レEo) O a. n type 200 mV O b. n type 800 mv Oc p type 400 mV Od. p type 200 mV O e. n type 400 mV Of. p type 800 mvarrow_forwardMost solar cells are semiconductor-based. If most solar radiation has a wavelength of less than 1m, what should the band gap of the solar cell material be? Silicon has a band gap of 1.14 eV. Is silicon a suitable solar cell material?arrow_forward
- . Mobility of electrons in a semiconductor is defined as the ratio of their drift velocity to the applied electric field. If for an n-type semiconductor, the density of electrons is 10¹⁹ m-³ and their mobility is 1.6 m² (V-s), then the resistivity of the semiconductor 2 semiconductor (since, it is an n-type contribution of holes is ignored) is close toarrow_forward2arrow_forwardA20. An intrinsic silicon semiconductor is uniformly doped with acceptors to a level of 2x1017 cm-³. At room temperature, the electron concentration in this semiconductor is found to be 5x10² cm-3. What is the intrinsic carrier concentration of this semiconductor at room temperature and describe qualitatively how would the electron concentration change if the temperature increased slightly?arrow_forward
- The electron number density in a semiconductor varies from 1020 m³ to 10¹2 m³ linearly over a distance of 4 µm. Determine the electron diffusion current and electric field at the midpoint if no current flows, He = 0.135 m²V-¹s¹ and T = 300 K.arrow_forwardThe conductivity of a semiconductor is 250 S/m at 20 °C and 1100 S/m at 100 °C. Prove that the band gap of this semiconductor is 0.263 eV.arrow_forwardA semiconductor is struck by light of slowly increasing frequency and begins to conduct when the wavelength of the light is 597.9 nm. Estimate the energy gap in eV, Egarrow_forward
- Which statement about the intrinsic carrier concentration in a semiconductor material is FALSE? The intrinsic carrier concentration is exponentially dependent on the inverse of the temperature of the semiconductor material. In an intrinsic semiconductor material, the concentration of electrons in the conduction band is equal to the concentration holes in the valence band. The intrinsic carrier concentration of a semiconductor material at a constant temperature depends on the Fermi energy. The intrinsic Fermi energy is positioned near the center of the bandgap for an intrinsic semiconductor.arrow_forwardA semiconductor Hall probe has a Hall coefficient (RH) of -3.75 x 105 m³/C in the temperature range of 130 K and 350 K. Its electrical conductivity is 150 (2.m)-¹. A. Deduce, with explanation, the type of carriers in the semiconductor B. Calculate the density and mobility of the charge carriers C. Give 2 examples of Hall probe application and 2 material fabrication methods for Hall effect proves.arrow_forwardIn an N-type semiconductor at T = 300 K, the electron concentration varies linearly from 2 x 10^18 to 5 X 10^17 per cc over a distance of 1.5 mm and the diffusion current density is 360 A/cm^2. Find the mobility of electrons.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning