CALCULUS WITH APPLICATIONS
11th Edition
ISBN: 2818440028625
Author: Lial
Publisher: ELSEVIER
expand_more
expand_more
format_list_bulleted
Question
Chapter 4.2, Problem 27E
To determine
To find: The derivative of the given function.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
please include radicals in answer
Find the arc length of the curve below on the given interval by integrating with respect to x.
4
4
+
1
8x
2
[1,3]
Find the length of the curve x=
from y = 1 to y = 2.
2
8y
Chapter 4 Solutions
CALCULUS WITH APPLICATIONS
Ch. 4.1 - YOUR TURN 1 find f′(t).
Ch. 4.1 - YOUR TURN 2 find dy/dx.
Ch. 4.1 - Prob. 3YTCh. 4.1 - Prob. 4YTCh. 4.1 - Prob. 5YTCh. 4.1 - Prob. 1WECh. 4.1 - Prob. 2WECh. 4.1 - Find the derivative of each function defined as...Ch. 4.1 - Find the derivative of each function defined as...Ch. 4.1 - Find the derivative of each function defined as...
Ch. 4.1 - Find the derivative of each function defined as...Ch. 4.1 - Find the derivative of each function defined as...Ch. 4.1 - Find the derivative of each function defined as...Ch. 4.1 - Find the derivative of each function defined as...Ch. 4.1 - Find the derivative of each function defined as...Ch. 4.1 - Find the derivative of each function defined as...Ch. 4.1 - Find the derivative of each function defined as...Ch. 4.1 - Find the derivative of each function defined as...Ch. 4.1 - Find the derivative of each function defined as...Ch. 4.1 - Find the derivative of each function defined as...Ch. 4.1 - Find the derivative of each function defined as...Ch. 4.1 - Find the derivative of each function defined as...Ch. 4.1 - Find the derivative of each function defined as...Ch. 4.1 - Find the derivative of each function defined as...Ch. 4.1 - Find the derivative of each function defined as...Ch. 4.1 - Find the derivative of each function defined as...Ch. 4.1 - Find the derivative of each function defined as...Ch. 4.1 - Prob. 21ECh. 4.1 - Find the derivative of each function defined as...Ch. 4.1 - 23. Which of the following describes the...Ch. 4.1 - Prob. 24ECh. 4.1 - Prob. 25ECh. 4.1 - Prob. 26ECh. 4.1 - Find each derivative.
27.
Ch. 4.1 - Find each derivative.
28.
Ch. 4.1 - Prob. 29ECh. 4.1 - Find each derivative.
30.f′(3) if
Ch. 4.1 - In Exercises 31-34, find the slope of the tangent...Ch. 4.1 - In Exercises 31-34, find the slope of the tangent...Ch. 4.1 - Prob. 33ECh. 4.1 - Prob. 34ECh. 4.1 - Prob. 35ECh. 4.1 - Prob. 36ECh. 4.1 - In Exercises 37-40, for each function find all...Ch. 4.1 - Prob. 38ECh. 4.1 - Prob. 39ECh. 4.1 - In Exercises 37-40, for each function find all...Ch. 4.1 - Prob. 41ECh. 4.1 - Prob. 42ECh. 4.1 - Prob. 43ECh. 4.1 - 44. If g′(5) = 12 and h′ (5) = −3, find f′ (5) for...Ch. 4.1 - Prob. 45ECh. 4.1 - 46. Use the information given in the figure to...Ch. 4.1 - Prob. 47ECh. 4.1 - Prob. 48ECh. 4.1 - Prob. 49ECh. 4.1 - Prob. 50ECh. 4.1 - Prob. 51ECh. 4.1 - Prob. 52ECh. 4.1 - Prob. 53ECh. 4.1 - Prob. 54ECh. 4.1 - Prob. 55ECh. 4.1 - Prob. 56ECh. 4.1 - Prob. 57ECh. 4.1 - Prob. 58ECh. 4.1 - Prob. 59ECh. 4.1 - Prob. 60ECh. 4.1 - Prob. 61ECh. 4.1 - Prob. 62ECh. 4.1 - Prob. 63ECh. 4.1 - Prob. 64ECh. 4.1 - 65. Track and Field In 1906 Kennelly developed a...Ch. 4.1 - Prob. 66ECh. 4.1 - Prob. 67ECh. 4.1 - Prob. 68ECh. 4.1 - Prob. 69ECh. 4.1 - Velocity We saw in the previous chapter that if a...Ch. 4.1 - Prob. 71ECh. 4.1 - Prob. 72ECh. 4.1 - 73. Velocity A ball is thrown vertically upward...Ch. 4.1 - 74. Dead Sea Researchers who have been studying...Ch. 4.1 - Prob. 75ECh. 4.1 - 76. AP Examination The probability (as a percent)...Ch. 4.1 - 77. Dog’s Human Age From the data printed in the...Ch. 4.2 - YOUR TURN 1 Find the derivative of y = (x3 + 7)(4...Ch. 4.2 - YOUR TURN 2 Find f′(x) if
Ch. 4.2 - Prob. 3YTCh. 4.2 - Prob. 4YTCh. 4.2 - Prob. 1WECh. 4.2 - Prob. 2WECh. 4.2 - Prob. 3WECh. 4.2 - Prob. 1ECh. 4.2 - Use the product rule to find the derivative of the...Ch. 4.2 - Use the product rule to find the derivative of the...Ch. 4.2 - Use the product rule to find the derivative of the...Ch. 4.2 - Use the product rule to find the derivative of the...Ch. 4.2 - Use the product rule to find the derivative of the...Ch. 4.2 - Use the product rule to find the derivative of the...Ch. 4.2 - Use the product rule to find the derivative of the...Ch. 4.2 - Use the product rule to find the derivative of the...Ch. 4.2 - Use the product rule to find the derivative of the...Ch. 4.2 - Use the quotient rule to find the derivative of...Ch. 4.2 - Use the quotient rule to find the derivative of...Ch. 4.2 - Use the quotient rule to find the derivative of...Ch. 4.2 - Use the quotient rule to find the derivative of...Ch. 4.2 - Use the quotient rule to find the derivative of...Ch. 4.2 - Use the quotient rule to find the derivative of...Ch. 4.2 - Use the quotient rule to find the derivative of...Ch. 4.2 - Use the quotient rule to find the derivative of...Ch. 4.2 - Use the quotient rule to find the derivative of...Ch. 4.2 - Use the quotient rule to find the derivative of...Ch. 4.2 - Use the quotient rule to find the derivative of...Ch. 4.2 - Use the quotient rule to find the derivative of...Ch. 4.2 - Use the quotient rule to find the derivative of...Ch. 4.2 - Use the quotient rule to find the derivative of...Ch. 4.2 - Prob. 25ECh. 4.2 - Prob. 26ECh. 4.2 - Prob. 27ECh. 4.2 - Use the quotient rule to find the derivative of...Ch. 4.2 - Prob. 29ECh. 4.2 - Use the quotient rule to find the derivative of...Ch. 4.2 - Prob. 31ECh. 4.2 - Prob. 32ECh. 4.2 - Prob. 33ECh. 4.2 - 34. Find an equation of the line tangent to the...Ch. 4.2 - Prob. 35ECh. 4.2 - Prob. 36ECh. 4.2 - Prob. 37ECh. 4.2 - 38. Use the fact that f(x) = u(x)/v(x) can be...Ch. 4.2 - Prob. 39ECh. 4.2 - Prob. 40ECh. 4.2 - Prob. 41ECh. 4.2 - Prob. 42ECh. 4.2 - Prob. 43ECh. 4.2 - Prob. 44ECh. 4.2 - Prob. 45ECh. 4.2 - Prob. 46ECh. 4.2 - Prob. 47ECh. 4.2 - 48. Revenue Suppose that at the beginning of the...Ch. 4.2 - Prob. 49ECh. 4.2 - 50. Muscle Reaction When a certain drug is...Ch. 4.2 - Prob. 51ECh. 4.2 - Prob. 52ECh. 4.2 - Prob. 53ECh. 4.2 - 54. Memory Retention Some psychologists contend...Ch. 4.2 - Prob. 55ECh. 4.2 - Prob. 56ECh. 4.3 - YOUR TURN 1 For the functionsin Example 1, find...Ch. 4.3 - Prob. 2YTCh. 4.3 - Prob. 3YTCh. 4.3 - Prob. 4YTCh. 4.3 - Prob. 5YTCh. 4.3 - Prob. 6YTCh. 4.3 - Prob. 7YTCh. 4.3 - Prob. 1WECh. 4.3 - Prob. 2WECh. 4.3 - Prob. 3WECh. 4.3 - Prob. 1ECh. 4.3 - Let f(x) = 5x2 − 2x and g(x) = 8x + 3.
2....Ch. 4.3 - Prob. 3ECh. 4.3 - Prob. 4ECh. 4.3 - Prob. 5ECh. 4.3 - Prob. 6ECh. 4.3 - Prob. 7ECh. 4.3 - Find f[g(x)] and g[f(x)].
8. f(x) = −8x + 9;
Ch. 4.3 - Prob. 9ECh. 4.3 - Prob. 10ECh. 4.3 - Prob. 11ECh. 4.3 - Find f[g(x)] and g[f(x)].
12. f(x) = 8x2 − 11x;
Ch. 4.3 - Find f[g(x)] and g[f(x)].
13. ;
Ch. 4.3 - Find f[g(x)] and g[f(x)].
14. ;
Ch. 4.3 - Prob. 15ECh. 4.3 - Write each function as the composition of two...Ch. 4.3 - Prob. 17ECh. 4.3 - Write each function as the composition of two...Ch. 4.3 - Prob. 19ECh. 4.3 - Write each function as the composition of two...Ch. 4.3 - Prob. 21ECh. 4.3 - Find the derivative of each function defined as...Ch. 4.3 - Find the derivative of each function defined as...Ch. 4.3 - Find the derivative of each function defined as...Ch. 4.3 - Find the derivative of each function defined as...Ch. 4.3 - Find the derivative of each function defined as...Ch. 4.3 - Find the derivative of each function defined as...Ch. 4.3 - Find the derivative of each function defined as...Ch. 4.3 - Find the derivative of each function defined as...Ch. 4.3 - Find the derivative of each function defined as...Ch. 4.3 - Find the derivative of each function defined as...Ch. 4.3 - Find the derivative of each function defined as...Ch. 4.3 - Find the derivative of each function defined as...Ch. 4.3 - Find the derivative of each function defined as...Ch. 4.3 - Find the derivative of each function defined as...Ch. 4.3 - Find the derivative of each function defined as...Ch. 4.3 - Find the derivative of each function defined as...Ch. 4.3 - Find the derivative of each function defined as...Ch. 4.3 - Find the derivative of each function defined as...Ch. 4.3 - Find the derivative of each function defined as...Ch. 4.3 - Prob. 41ECh. 4.3 - Prob. 42ECh. 4.3 - Prob. 43ECh. 4.3 - Prob. 44ECh. 4.3 - Prob. 45ECh. 4.3 - In Exercises 45-48, find the equation of the...Ch. 4.3 - Prob. 47ECh. 4.3 - Prob. 48ECh. 4.3 - Prob. 49ECh. 4.3 - Prob. 50ECh. 4.3 - Prob. 51ECh. 4.3 - 52. Mrugy and Nate are working on taking the...Ch. 4.3 - Prob. 53ECh. 4.3 - Prob. 54ECh. 4.3 - Prob. 55ECh. 4.3 - 56. Demand Suppose a demand function is given...Ch. 4.3 - Prob. 57ECh. 4.3 - Prob. 58ECh. 4.3 - Prob. 59ECh. 4.3 - Prob. 60ECh. 4.3 - Prob. 61ECh. 4.3 - Prob. 62ECh. 4.3 - 63. To test an individual’s use of calcium, a...Ch. 4.3 - Prob. 64ECh. 4.4 - YOUR TURN 1 Find dy/dx for
y = 43x,
y = e3x+5.
Ch. 4.4 - Prob. 2YTCh. 4.4 - Prob. 3YTCh. 4.4 - Prob. 4YTCh. 4.4 - Prob. 1WECh. 4.4 - Prob. 2WECh. 4.4 - Prob. 3WECh. 4.4 - Prob. 1ECh. 4.4 - Find derivatives of the functions defined as...Ch. 4.4 - Prob. 3ECh. 4.4 - Prob. 4ECh. 4.4 - Prob. 5ECh. 4.4 - Prob. 6ECh. 4.4 - Prob. 7ECh. 4.4 - Find derivatives of the functions defined as...Ch. 4.4 - Find derivatives of the functions defined as...Ch. 4.4 - Prob. 10ECh. 4.4 - Prob. 11ECh. 4.4 - Prob. 12ECh. 4.4 - Prob. 13ECh. 4.4 - Prob. 14ECh. 4.4 - Find derivatives of the functions defined as...Ch. 4.4 - Find derivatives of the functions defined as...Ch. 4.4 - Prob. 17ECh. 4.4 - Prob. 18ECh. 4.4 - Prob. 19ECh. 4.4 - Find derivatives of the functions defined as...Ch. 4.4 - Prob. 21ECh. 4.4 - Find derivatives of the functions defined as...Ch. 4.4 - Find derivatives of the functions defined as...Ch. 4.4 - Prob. 24ECh. 4.4 - Prob. 25ECh. 4.4 - Find derivatives of the functions defined as...Ch. 4.4 - Find derivatives of the functions defined as...Ch. 4.4 - Find derivatives of the functions defined as...Ch. 4.4 - Prob. 29ECh. 4.4 - Prob. 30ECh. 4.4 - Find derivatives of the functions defined as...Ch. 4.4 - Prob. 32ECh. 4.4 - Find derivatives of the functions defined as...Ch. 4.4 - Find derivatives of the functions defined as...Ch. 4.4 - Prob. 35ECh. 4.4 - Prob. 36ECh. 4.4 - Prob. 37ECh. 4.4 - Prob. 38ECh. 4.4 - Prob. 39ECh. 4.4 - 40. Sales The sales of a new personal computer (in...Ch. 4.4 - Prob. 41ECh. 4.4 - Prob. 42ECh. 4.4 - Prob. 43ECh. 4.4 - 44. Investment The value of a particular...Ch. 4.4 - Prob. 45ECh. 4.4 - 46. Population Growth In Section 10.4, Exercise...Ch. 4.4 - Prob. 47ECh. 4.4 - Prob. 48ECh. 4.4 - Prob. 49ECh. 4.4 - Prob. 50ECh. 4.4 - Prob. 52ECh. 4.4 - Prob. 53ECh. 4.4 - Prob. 54ECh. 4.4 - Prob. 55ECh. 4.4 - Prob. 56ECh. 4.4 - Prob. 57ECh. 4.4 - Prob. 58ECh. 4.4 - Prob. 59ECh. 4.4 - Prob. 60ECh. 4.4 - Prob. 61ECh. 4.4 - Prob. 62ECh. 4.4 - 63. The Gateway Arch The Gateway Arch in St....Ch. 4.4 - Prob. 64ECh. 4.4 - Prob. 65ECh. 4.5 - YOUR TURN 1 Find the derivative of f(x) = log3x.
Ch. 4.5 - Prob. 2YTCh. 4.5 - Prob. 3YTCh. 4.5 - Prob. 1WECh. 4.5 - Prob. 2WECh. 4.5 - Prob. 3WECh. 4.5 - Prob. 1ECh. 4.5 - Prob. 2ECh. 4.5 - Prob. 3ECh. 4.5 - Find the derivative of each function.
4. y = ln(1...Ch. 4.5 - Prob. 5ECh. 4.5 - Find the derivative of each function.
6. y =...Ch. 4.5 - Prob. 7ECh. 4.5 - Prob. 8ECh. 4.5 - Find the derivative of each function.
9.
Ch. 4.5 - Prob. 10ECh. 4.5 - Find the derivative of each of the following...Ch. 4.5 - Find the derivative of each of the following...Ch. 4.5 - Prob. 13ECh. 4.5 - Prob. 14ECh. 4.5 - Find the derivative of each of the following...Ch. 4.5 - Find the derivative of each of the following...Ch. 4.5 - Prob. 17ECh. 4.5 - Prob. 18ECh. 4.5 - Prob. 19ECh. 4.5 - Find the derivative of each of the following...Ch. 4.5 - Find the derivative of each of the following...Ch. 4.5 - Find the derivative of each of the following...Ch. 4.5 - Find the derivative of each of the following...Ch. 4.5 - Prob. 24ECh. 4.5 - Prob. 25ECh. 4.5 - Prob. 26ECh. 4.5 - Prob. 27ECh. 4.5 - Prob. 28ECh. 4.5 - Prob. 29ECh. 4.5 - Find the derivative of each of the following...Ch. 4.5 - Find the derivative of each of the following...Ch. 4.5 - Prob. 32ECh. 4.5 - Prob. 33ECh. 4.5 - Prob. 34ECh. 4.5 - Prob. 35ECh. 4.5 - Prob. 36ECh. 4.5 - Prob. 37ECh. 4.5 - Prob. 38ECh. 4.5 - Find the derivative of each of the following...Ch. 4.5 - Prob. 40ECh. 4.5 - Find the derivative of each of the following...Ch. 4.5 - Find the derivative of each of the following...Ch. 4.5 - Find the derivative of each of the following...Ch. 4.5 - Find the derivative of each of the following...Ch. 4.5 - Prob. 45ECh. 4.5 - Prob. 46ECh. 4.5 - Prob. 47ECh. 4.5 - Prob. 48ECh. 4.5 - Prob. 49ECh. 4.5 - Prob. 50ECh. 4.5 - Prob. 51ECh. 4.5 - Prob. 52ECh. 4.5 - Prob. 53ECh. 4.5 - Use the ideas from Exercise 53 to find the...Ch. 4.5 - Prob. 55ECh. 4.5 - Prob. 56ECh. 4.5 - 57. Revenue Suppose the demand function for q...Ch. 4.5 - 58. Profit If the cost function in dollars for q...Ch. 4.5 - Prob. 59ECh. 4.5 - Prob. 60ECh. 4.5 - Prob. 61ECh. 4.5 - Prob. 62ECh. 4.5 - Prob. 63ECh. 4.5 - Prob. 64ECh. 4.5 - Prob. 65ECh. 4.5 - Prob. 66ECh. 4.5 - 67. Richter Scale Richter Scale The Richter scale...Ch. 4.5 - Prob. 68ECh. 4 - Prob. 1RECh. 4 - Prob. 2RECh. 4 - Prob. 3RECh. 4 - Prob. 4RECh. 4 - Prob. 5RECh. 4 - Prob. 6RECh. 4 - Prob. 7RECh. 4 - Prob. 8RECh. 4 - Prob. 9RECh. 4 - Prob. 10RECh. 4 - Use the rules for derivatives to find the...Ch. 4 - Prob. 12RECh. 4 - Prob. 13RECh. 4 - Prob. 14RECh. 4 - Prob. 15RECh. 4 - Prob. 16RECh. 4 - Prob. 17RECh. 4 - Prob. 18RECh. 4 - Prob. 19RECh. 4 - Prob. 20RECh. 4 - Use the rules for derivatives to find the...Ch. 4 - Prob. 22RECh. 4 - Prob. 23RECh. 4 - Prob. 24RECh. 4 - Prob. 25RECh. 4 - Prob. 26RECh. 4 - Prob. 27RECh. 4 - Prob. 28RECh. 4 - Prob. 29RECh. 4 - Prob. 30RECh. 4 - Prob. 31RECh. 4 - Prob. 32RECh. 4 - Prob. 33RECh. 4 - Prob. 34RECh. 4 - Prob. 35RECh. 4 - Prob. 36RECh. 4 - Prob. 37RECh. 4 - Prob. 38RECh. 4 - Prob. 39RECh. 4 - Prob. 40RECh. 4 - Prob. 41RECh. 4 - Prob. 42RECh. 4 - Prob. 43RECh. 4 - Use the rules for derivatives to find the...Ch. 4 - Prob. 45RECh. 4 - Prob. 46RECh. 4 - Prob. 47RECh. 4 - Prob. 48RECh. 4 - Prob. 49RECh. 4 - Prob. 50RECh. 4 - Prob. 51RECh. 4 - Prob. 52RECh. 4 - Prob. 53RECh. 4 - Prob. 54RECh. 4 - Prob. 55RECh. 4 - Prob. 56RECh. 4 - Prob. 57RECh. 4 - Prob. 58RECh. 4 - Prob. 59RECh. 4 - Prob. 60RECh. 4 - Find the slope of the tangent line to the given...Ch. 4 - Prob. 62RECh. 4 - Prob. 63RECh. 4 - Prob. 64RECh. 4 - Prob. 65RECh. 4 - Prob. 66RECh. 4 - Prob. 67RECh. 4 - Prob. 68RECh. 4 - Prob. 69RECh. 4 - Prob. 70RECh. 4 - Prob. 71RECh. 4 - Prob. 72RECh. 4 - Prob. 73RECh. 4 - Prob. 74RECh. 4 - Prob. 75RECh. 4 - Prob. 76RECh. 4 - Prob. 77RECh. 4 - Prob. 78RECh. 4 - Prob. 79RECh. 4 - Prob. 80RECh. 4 - Prob. 81RECh. 4 - Prob. 83RECh. 4 - Prob. 84RECh. 4 - Prob. 85RECh. 4 - Prob. 86RECh. 4 - Prob. 87RECh. 4 - Prob. 88RECh. 4 - Prob. 89RECh. 4 - Prob. 90RECh. 4 - Prob. 91RECh. 4 - Prob. 92RECh. 4 - Prob. 93RE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- Find the length of the following curve. 3 1 2 N x= 3 -y from y 6 to y=9arrow_forward3 4/3 3213 + 8 for 1 ≤x≤8. Find the length of the curve y=xarrow_forwardGiven that the outward flux of a vector field through the sphere of radius r centered at the origin is 5(1 cos(2r)) sin(r), and D is the value of the divergence of the vector field at the origin, the value of sin (2D) is -0.998 0.616 0.963 0.486 0.835 -0.070 -0.668 -0.129arrow_forward
- 10 The hypotenuse of a right triangle has one end at the origin and one end on the curve y = Express the area of the triangle as a function of x. A(x) =arrow_forwardIn Problems 17-26, solve the initial value problem. 17. dy = (1+ y²) tan x, y(0) = √√3arrow_forwardcould you explain this as well as disproving each wrong optionarrow_forward
- could you please show the computation of this by wiresarrow_forward4 Consider f(x) periodic function with period 2, coinciding with (x) = -x on the interval [,0) and being the null function on the interval [0,7). The Fourier series of f: (A) does not converge in quadratic norm to f(x) on [−π,π] (B) is pointwise convergent to f(x) for every x = R П (C) is in the form - 4 ∞ +Σ ak cos(kx) + bk sin(kx), ak ‡0, bk ‡0 k=1 (D) is in the form ak cos(kx) + bk sin(kx), ak 0, bk 0 k=1arrow_forwardSolve the equation.arrow_forward
- could you explain this pleasearrow_forwardthe answer is C, could you show me how to do itarrow_forward7. [-/1 Points] DETAILS MY NOTES SESSCALCET2 6.1.505.XP. Evaluate the integral. (Use C for the constant of integration.) 21z³e² dz | 21 Need Help? Read It SUBMIT ANSWER 8. [-/1 Points] DETAILS MY NOTES SESSCALCET2 6.1.020. Evaluate the integral. 36 In y dy ₤36 25 Need Help? Read It SUBMIT ANSWER 9. [-/1 Points] DETAILS MY NOTES SESSCALCET2 6.1.009. Evaluate the integral. (Use C for the constant of integration.) In(7x In(7x + 1) dxarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning
Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning
Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON
Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman
Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning
Chain Rule dy:dx = dy:du*du:dx; Author: Robert Cappetta;https://www.youtube.com/watch?v=IUYniALwbHs;License: Standard YouTube License, CC-BY
CHAIN RULE Part 1; Author: Btech Maths Hub;https://www.youtube.com/watch?v=TIAw6AJ_5Po;License: Standard YouTube License, CC-BY