
Concept explainers
To find:
(a) in which square in Fig 42.6 of the textbook does the radionuclide 196I transform when it decays by an electron.
(b) if any further decays occur, by looking at Fig 42.6 of the textbook.

Answer to Problem 1Q
Solution:
(a) When the radionuclide 196I decays by an electron, it transforms into 196Pt.
(b) No further decay occurs after 196I decays by an electron, and transforms into 196Pt, because 196Pt is a stable nucleus.
Explanation of Solution
Given:
i. A radionuclide 196I decays by emitting an electron.
ii. Refer to Fig 42.6 of the textbook to know how this nuclide is transformed.
Concept
When a nuclide decays via an electron, a neutron is changing or transforming into a proton, hence the new nuclide will have the same mass A, but a higher Z, that is Z will be transformed to Z+1.
p + e - +
From Fig 42.6 of the textbook, we get
The Z of Ir is 77, and Z of Pt is 78; when 196I decays by emitting an electron, we get
From Fig 42.6 of the textbook, we can say that
Conclusion
When a nuclide decays by an electron (β- - decay), its Z transforms to Z+1, but it’s mass A remains unchanged.
Want to see more full solutions like this?
Chapter 42 Solutions
Fundamentals of Physics
- pls help on thesearrow_forward20. Two small conducting spheres are placed on top of insulating pads. The 3.7 × 10-10 C sphere is fixed whie the 3.0 × 107 C sphere, initially at rest, is free to move. The mass of each sphere is 0.09 kg. If the spheres are initially 0.10 m apart, how fast will the sphere be moving when they are 1.5 m apart?arrow_forwardpls help on allarrow_forward
- 19. Mount Everest, Earth's highest mountain above sea level, has a peak of 8849 m above sea level. Assume that sea level defines the height of Earth's surface. (re = 6.38 × 106 m, ME = 5.98 × 1024 kg, G = 6.67 × 10 -11 Nm²/kg²) a. Calculate the strength of Earth's gravitational field at a point at the peak of Mount Everest. b. What is the ratio of the strength of Earth's gravitational field at a point 644416m below the surface of the Earth to a point at the top of Mount Everest? C. A tourist watching the sunrise on top of Mount Everest observes a satellite orbiting Earth at an altitude 3580 km above his position. Determine the speed of the satellite.arrow_forwardpls help on allarrow_forwardpls help on allarrow_forward
- 6. As the distance between two charges decreases, the magnitude of the electric potential energy of the two-charge system: a) Always increases b) Always decreases c) Increases if the charges have the same sign, decreases if they have the opposite signs d) Increases if the charges have the opposite sign, decreases if they have the same sign 7. To analyze the motion of an elastic collision between two charged particles we use conservation of & a) Energy, Velocity b) Momentum, Force c) Mass, Momentum d) Energy, Momentum e) Kinetic Energy, Potential Energyarrow_forwardpls help on all asked questions kindlyarrow_forwardpls help on all asked questions kindlyarrow_forward
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





