Linear Algebra: A Modern Introduction
4th Edition
ISBN: 9781285463247
Author: David Poole
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 4.2, Problem 1EQ
Compute the determinants in Exercises 1-6 using cofactor expansion along the first row and along the first column.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Use the graph to solve 3x2-3x-8=0
Într-un bloc sunt apartamente cu 2 camere și apartamente cu 3 camere , în total 20 de apartamente și 45 de camere.Calculați câte apartamente sunt cu 2 camere și câte apartamente sunt cu 3 camere.
1.2.19. Let and s be natural numbers. Let G be the simple graph with vertex set
Vo... V„−1 such that v; ↔ v; if and only if |ji| Є (r,s). Prove that S has exactly k
components, where k is the greatest common divisor of {n, r,s}.
Chapter 4 Solutions
Linear Algebra: A Modern Introduction
Ch. 4.1 - In Exercises 1-6, show that is an eigenvector of A...Ch. 4.1 - In Exercises 1-6, show that vis an eigenvector of...Ch. 4.1 - Prob. 3EQCh. 4.1 - In Exercises 1-6, show that vis an eigenvector of...Ch. 4.1 - In Exercises 1-6, show that vis an eigenvector of...Ch. 4.1 - In Exercises 1-6, show that is an eigenvector of A...Ch. 4.1 - In Exercises 7-12, show that is an eigenvector of...Ch. 4.1 - In Exercises 7-12, show that is an eigenvector of...Ch. 4.1 - In Exercises 7-12, show that is an eigenvector of...Ch. 4.1 - In Exercises 7-12, show that is an eigenvector of...
Ch. 4.1 - In Exercises 7-12, show that is an eigenvector of...Ch. 4.1 - In Exercises 7-12, show that is an eigenvector of...Ch. 4.1 - In Exercises 23-26, use the method of Example 4.5...Ch. 4.1 - In Exercises 23-26, use the method of Example 4.5...Ch. 4.1 - In Exercises 23-26, use the method of Example 4.5...Ch. 4.1 - In Exercises 31-34, find all of the eigenvalues of...Ch. 4.1 - Prob. 32EQCh. 4.1 - In Exercises 31-34, find all of the eigenvalues of...Ch. 4.1 - Consider again the matrix A in Exercise 35. Give...Ch. 4.2 - Compute the determinants in Exercises 1-6 using...Ch. 4.2 - Compute the determinants in Exercises 1-6 using...Ch. 4.2 - Compute the determinants in Exercises 1-6 using...Ch. 4.2 - Compute the determinants in Exercises 1-6 using...Ch. 4.2 - Compute the determinants in Exercises 1-6 using...Ch. 4.2 - Compute the determinants in Exercises 1-6 using...Ch. 4.2 - Compute the determinants in Exercises 7-15 using...Ch. 4.2 - Compute the determinants in Exercises 7-15 using...Ch. 4.2 - Compute the determinants in Exercises 7-15 using...Ch. 4.2 - Compute the determinants in Exercises 7-15 using...Ch. 4.2 - Compute the determinants in Exercises 7-15 using...Ch. 4.2 - Compute the determinants in Exercises 7-15 using...Ch. 4.2 - Compute the determinants in Exercises 7-15 using...Ch. 4.2 - Compute the determinants in Exercises 7-15 using...Ch. 4.2 - Compute the determinants in Exercises 7-15 using...Ch. 4.2 - Prob. 24EQCh. 4.2 - Prob. 26EQCh. 4.2 - Prob. 27EQCh. 4.2 - In Exercises 26-34, use properties of determinants...Ch. 4.2 - Prob. 29EQCh. 4.2 - Prob. 30EQCh. 4.2 - Prob. 31EQCh. 4.2 - In Exercises 26-34, use properties of determinants...Ch. 4.2 - Prob. 33EQCh. 4.2 - In Exercises 26-34, use properties of determinants...Ch. 4.2 - Find the determinants in Exercises 35-40, assuming...Ch. 4.2 - Find the determinants in Exercises 35-40, assuming...Ch. 4.2 - Find the determinants in Exercises 35-40, assuming...Ch. 4.2 - Find the determinants in Exercises 35-40, assuming...Ch. 4.2 -
Find the determinants in Exercises 35-40,...Ch. 4.2 - Prob. 45EQCh. 4.2 - In Exercises 45 and 46, use Theorem 4.6 to find...Ch. 4.2 - In Exercises 47-52, assume that A and B are nn...Ch. 4.2 - In Exercises 47-52, assume that A and B are n n...Ch. 4.2 -
In Exercises 47-52, assume that A and B are n ×...Ch. 4.2 -
In Exercises 47-52, assume that A and B are n × n...Ch. 4.2 - In Exercises 47-52, assume that A and B are nn...Ch. 4.2 - In Exercises 47-52, assume that A and B are nn...Ch. 4.2 - Prob. 53EQCh. 4.2 - Prob. 57EQCh. 4.2 - Prob. 58EQCh. 4.2 - Prob. 59EQCh. 4.2 - In Exercises 57-60, use Cramer's Rule to solve the...Ch. 4.2 - Prob. 61EQCh. 4.2 - Prob. 62EQCh. 4.2 - Prob. 63EQCh. 4.2 - Prob. 64EQCh. 4.3 - In Exercises 1-12, compute (a) the characteristic...Ch. 4.3 - Prob. 2EQCh. 4.3 - In Exercises 1-12, compute (a) the characteristic...Ch. 4.3 - In Exercises 1-12, compute (a) the characteristic...Ch. 4.3 - In Exercises 1-12, compute (a) the characteristic...Ch. 4.3 - In Exercises 1-12, compute (a) the characteristic...Ch. 4.3 - Prob. 7EQCh. 4.3 - In Exercises 1-12, compute (a) the characteristic...Ch. 4.4 - Prob. 5EQCh. 4.4 - Prob. 6EQCh. 4.4 - Prob. 7EQCh. 4.4 -
In general, it is difficult to show that two...Ch. 4.6 - Let x=x(t) be a twice-differentiable function and...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- Question 3 over a field K. In this question, MË(K) denotes the set of n × n matrices (a) Suppose that A Є Mn(K) is an invertible matrix. Is it always true that A is equivalent to A-¹? Justify your answer. (b) Let B be given by 8 B = 0 7 7 0 -7 7 Working over the field F2 with 2 elements, compute the rank of B as an element of M2(F2). (c) Let 1 C -1 1 [4] [6] and consider C as an element of M3(Q). Determine the minimal polynomial mc(x) and hence, or otherwise, show that C can not be diagonalised. [7] (d) Show that C in (c) considered as an element of M3(R) can be diagonalised. Write down all the eigenvalues. Show your working. [8]arrow_forwardR denotes the field of real numbers, Q denotes the field of rationals, and Fp denotes the field of p elements given by integers modulo p. You may refer to general results from lectures. Question 1 For each non-negative integer m, let R[x]m denote the vector space consisting of the polynomials in x with coefficients in R and of degree ≤ m. x²+2, V3 = 5. Prove that (V1, V2, V3) is a linearly independent (a) Let vi = x, V2 = list in R[x] 3. (b) Let V1, V2, V3 be as defined in (a). Find a vector v € R[×]3 such that (V1, V2, V3, V4) is a basis of R[x] 3. [8] [6] (c) Prove that the map ƒ from R[x] 2 to R[x]3 given by f(p(x)) = xp(x) — xp(0) is a linear map. [6] (d) Write down the matrix for the map ƒ defined in (c) with respect to the basis (2,2x + 1, x²) of R[x] 2 and the basis (1, x, x², x³) of R[x] 3. [5]arrow_forwardQuestion 4 (a) The following matrices represent linear maps on R² with respect to an orthonormal basis: = [1/√5 2/√5 [2/√5 -1/√5] " [1/√5 2/√5] A = B = [2/√5 1/√5] 1 C = D = = = [ 1/3/5 2/35] 1/√5 2/√5 -2/√5 1/√5' For each of the matrices A, B, C, D, state whether it represents a self-adjoint linear map, an orthogonal linear map, both, or neither. (b) For the quadratic form q(x, y, z) = y² + 2xy +2yz over R, write down a linear change of variables to u, v, w such that q in these terms is in canonical form for Sylvester's Law of Inertia. [6] [4]arrow_forward
- part b pleasearrow_forwardQuestion 5 (a) Let a, b, c, d, e, ƒ Є K where K is a field. Suppose that the determinant of the matrix a cl |df equals 3 and the determinant of determinant of the matrix a+3b cl d+3e f ГЪ e [ c ] equals 2. Compute the [5] (b) Calculate the adjugate Adj (A) of the 2 × 2 matrix [1 2 A = over R. (c) Working over the field F3 with 3 elements, use row and column operations to put the matrix [6] 0123] A = 3210 into canonical form for equivalence and write down the canonical form. What is the rank of A as a matrix over F3? 4arrow_forwardQuestion 2 In this question, V = Q4 and - U = {(x, y, z, w) EV | x+y2w+ z = 0}, W = {(x, y, z, w) € V | x − 2y + w − z = 0}, Z = {(x, y, z, w) € V | xyzw = 0}. (a) Determine which of U, W, Z are subspaces of V. Justify your answers. (b) Show that UW is a subspace of V and determine its dimension. (c) Is VU+W? Is V = UW? Justify your answers. [10] [7] '00'arrow_forward
- Tools Sign in Different masses and Indicated velocities Rotational inert > C C Chegg 39. The balls shown have different masses and speeds. Rank the following from greatest to least: 2.0 m/s 8.5 m/s 9.0 m/s 12.0 m/s 1.0 kg A 1.2 kg B 0.8 kg C 5.0 kg D C a. The momenta b. The impulses needed to stop the balls Solved 39. The balls shown have different masses and speeds. | Chegg.com Images may be subject to copyright. Learn More Share H Save Visit > quizlet.com%2FBoyE3qwOAUqXvw95Fgh5Rw.jpg&imgrefurl=https%3A%2F%2Fquizlet.com%2F529359992%2Fc. Xarrow_forwardSimplify the below expression. 3 - (-7)arrow_forward(6) ≤ a) Determine the following groups: Homz(Q, Z), Homz(Q, Q), Homz(Q/Z, Z) for n E N. Homz(Z/nZ, Q) b) Show for ME MR: HomR (R, M) = M.arrow_forward
- 1. If f(x² + 1) = x + 5x² + 3, what is f(x² - 1)?arrow_forward2. What is the total length of the shortest path that goes from (0,4) to a point on the x-axis, then to a point on the line y = 6, then to (18.4)?arrow_forwardموضوع الدرس Prove that Determine the following groups Homz(QZ) Hom = (Q13,Z) Homz(Q), Hom/z/nZ, Qt for neN- (2) Every factor group of adivisible group is divisble. • If R is a Skew ficald (aring with identity and each non Zero element is invertible then every R-module is free.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningElementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
- Algebra for College StudentsAlgebraISBN:9781285195780Author:Jerome E. Kaufmann, Karen L. SchwittersPublisher:Cengage Learning
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Algebra for College Students
Algebra
ISBN:9781285195780
Author:Jerome E. Kaufmann, Karen L. Schwitters
Publisher:Cengage Learning
HOW TO FIND DETERMINANT OF 2X2 & 3X3 MATRICES?/MATRICES AND DETERMINANTS CLASS XII 12 CBSE; Author: Neha Agrawal Mathematically Inclined;https://www.youtube.com/watch?v=bnaKGsLYJvQ;License: Standard YouTube License, CC-BY
What are Determinants? Mathematics; Author: Edmerls;https://www.youtube.com/watch?v=v4_dxD4jpgM;License: Standard YouTube License, CC-BY