Concept explainers
In Exercises 7–12, use the leading-term test and your knowledge of y-intercepts to match the function with one of the graphs (a)–(f) that follow.
12.
Want to see the full answer?
Check out a sample textbook solutionChapter 4 Solutions
College Algebra: Graphs and Models (6th Edition)
- For Exercises 9–18, graph the functions by plotting points or by using a graphing utility. Explain how the graphs are related. 9. a. f(x) = x b. g(x) = x + 2 c. h(x) = x² – 4 13. a. f(x) = |x| b. g(x) = -|x| 16. a. f(x) = |x| 1 b. g(x) = x| 14. a. f(x) = Vĩ b. g(x) = - Vĩ c. h(x) = 3|x| 10. a. f(x) = |x| b. g(x) = |x|+ 2 c. h(x) = |x| – 4 17. a. f(x) = V b. g(x) = V-x 15. a. f(x) = ? %3D b. g(x) = 11. a. f(x) = Vx b. g(x) = Vx – 2 c. h(x) = Vx + 4 18. a. f(x) = VI b. g(x) = V-x c. h(x) = 2r 12. a. f(x) = x b. g(x) = (x – 2)? c. h(x) = (x + 3)?arrow_forwardFor Exercises 75–84, determine the r- and y-intercepts for the given function. (See Example 7) 75. f(x) = 2x – 4 76. g(x) = 3x – 12 77. h(x) = |x| – 8 78. k(x) = -|x| + 2 79. p(x) = -x + 12 80. q(x) = - 8 81. r(x) = |x – 8| 82. s(x) = |x + 3| 83. f(x) = Vx – 2 84. g(x) = – Vx + 3arrow_forwardsketch the graph of the function.arrow_forward
- 6. Sketch the graph of the function f(x) = -(x - 4) (x + 1)²(x − 5). Explain your thinking.arrow_forwardI need help with these practice problemsarrow_forward2. (MG 8, Section 5 Purple). For the three exercises below, use a graph and the Horizontal Line Test to determine if each function represents a one-to-one function. Explain your reasoning. (a) f(x) =x² + 3x+2 (b) f(x) =x³ – 5x+10 (c) f(x) =x³ + 5x+10arrow_forward
- 9) Analyze the graph of each function. b) F(x) = x-1)(x+2)(x-3) x(х-4)2 %3Darrow_forwardExercises 121–140: (Refer to Examples 12–14.) Complete the following for the given f(x). (a) Find f(x + h). (b) Find the difference quotient of f and simplify. 121. f(x) = 3 122. f(x) = -5 123. f(x) = 2x + 1 124. f(x) = -3x + 4 %3D 125. f(x) = 4x + 3 126. f(x) = 5x – 6 127. f(x) = -6x² - x + 4 128. f(x) = x² + 4x 129. f(x) = 1 – x² 130. f(x) = 3x² 131. f(x) = 132. /(x) 3D글 = = 132. f(: 133. f(x) = 3x² + 1 134. f(x) = x² –- 2 135. f(x) = -x² + 2r 136. f(x) = -4xr² + 1 137. f(x) = 2x - x +1 138. f(x) = x² + 3x - 2 139. f(x) = x' 140. f(x) = 1 – xarrow_forwardPls help ASAParrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage