Differential equations can be used to model disease epidemics. In the next set of problems, we examine the change of size of two sub-populations of people living in a city: individuals who are infected and individuals who are susceptible to infection. S represents the size of the susceptible population, and I represents the size of the infected population. We assume that if a susceptible person interacts with an infected person, there is a probability c that the susceptible person will become infected. Each infected person recovers from the infection at a rate r and becomes susceptible again. We consider the case of influenza, where we assume that no one dies from the disease, so we assume that the total population size of the two sub-populations is a constant number, N. The differential equations that model these population sizes are S ' = rI − cSI and I ' =cSI − rI. Here c represents the contact rate and r is the recovery rate. 110. [T] h = 10
Differential equations can be used to model disease epidemics. In the next set of problems, we examine the change of size of two sub-populations of people living in a city: individuals who are infected and individuals who are susceptible to infection. S represents the size of the susceptible population, and I represents the size of the infected population. We assume that if a susceptible person interacts with an infected person, there is a probability c that the susceptible person will become infected. Each infected person recovers from the infection at a rate r and becomes susceptible again. We consider the case of influenza, where we assume that no one dies from the disease, so we assume that the total population size of the two sub-populations is a constant number, N. The differential equations that model these population sizes are S ' = rI − cSI and I ' =cSI − rI. Here c represents the contact rate and r is the recovery rate. 110. [T] h = 10
Differential equations can be used to model disease epidemics. In the next set of problems, we examine the change of size of two sub-populations of people living in a city: individuals who are infected and individuals who are susceptible to infection. S represents the size of the susceptible population, and I represents the size of the infected population. We assume that if a susceptible person interacts with an infected person, there is a probability c that the susceptible person will become infected. Each infected person recovers from the infection at a rate r and becomes susceptible again. We consider the case of influenza, where we assume that no one dies from the disease, so we assume that the total population size of the two sub-populations is a constant number, N. The differential equations that model these population sizes are
S' = rI − cSI and
I' =cSI − rI.
Here c represents the contact rate and r is the recovery rate.
During busy political seasons, many opinion polls are conducted. In apresidential race, how do you think the participants in polls are generally selected?Discuss any issues regarding simple random, stratified, systematic, cluster, andconvenience sampling in these polls. What about other types of polls, besides political?
Elementary Statistics: Picturing the World (7th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY