Slope Field In Exercises 45 and 46, a differential equation, a point, and a slope field are given. A slope field (or direction field) consists of line segments with slopes given by the differential equation. These line segments give a visual perspective of the slopes of the solutions of the differential equation, (a) Sketch two approximate solutions of the differential equation on the slope field, one of which passes through the indicated point. (To print an enlarged copy of the graph, go to MathGraphs.com.) (b) Use integration and the given point to find the particular solution of the differential equation and use a graphing utility to graph the solution. Compare the result with the sketch in part (a) that passes through the given point. d y d x = − 1 x 2 , x > 0 , ( 1 , 3 )
Slope Field In Exercises 45 and 46, a differential equation, a point, and a slope field are given. A slope field (or direction field) consists of line segments with slopes given by the differential equation. These line segments give a visual perspective of the slopes of the solutions of the differential equation, (a) Sketch two approximate solutions of the differential equation on the slope field, one of which passes through the indicated point. (To print an enlarged copy of the graph, go to MathGraphs.com.) (b) Use integration and the given point to find the particular solution of the differential equation and use a graphing utility to graph the solution. Compare the result with the sketch in part (a) that passes through the given point. d y d x = − 1 x 2 , x > 0 , ( 1 , 3 )
Solution Summary: The author explains how the two approximate solutions of the differential equation on the slope field can be made by using the Maple as, Interpretation: From the graph, the function behaviour remains same for different points.
Slope Field In Exercises 45 and 46, a differential equation, a point, and a slope field are given. A slope field (or direction field) consists of line segments with slopes given by the differential equation. These line segments give a visual perspective of the slopes of the solutions of the differential equation, (a) Sketch two approximate solutions of the differential equation on the slope field, one of which passes through the indicated point. (To print an enlarged copy of the graph, go to MathGraphs.com.) (b) Use integration and the given point to find the particular solution of the differential equation and use a graphing utility to graph the solution. Compare the result with the sketch in part (a) that passes through the given point.
d
y
d
x
=
−
1
x
2
,
x
>
0
,
(
1
,
3
)
With integration, one of the major concepts of calculus. Differentiation is the derivative or rate of change of a function with respect to the independent variable.
After a great deal of experimentation, two college senior physics majors determined that when a bottle of French champagne is shaken several times, held upright, and uncorked,
its cork travels according to the function below, where s is its height (in feet) above the ground t seconds after being released.
s(t)=-16t² + 30t+3
a. How high will it go?
b. How long is it in the air?
+6x²+135x+1) (0≤x≤10). a) Find the number of units
The total profit P(x) (in thousands of dollars) from a sale of x thousand units of a new product is given by P(x) = In (-x²+6x² + 135x+
that should be sold in order to maximize the total profit. b) What is the maximum profit?
The fox population in a certain region has an annual growth rate of 8 percent per year. It is estimated that the
population in the year 2000 was 22600.
(a) Find a function that models the population t years after 2000 (t = 0 for 2000).
Your answer is P(t)
=
(b) Use the function from part (a) to estimate the fox population in the year 2008.
Your answer is (the answer should be an integer)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY