Bundle: Physics For Scientists And Engineers With Modern Physics, 10th + Webassign Printed Access Card For Serway/jewett's Physics For Scientists And Engineers, 10th, Multi-term
10th Edition
ISBN: 9781337888516
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 41, Problem 27P
(a)
To determine
The electronic configuration of ground state for nitrogen.
(b)
To determine
The values for the possible set of quantum numbers for the electrons of nitrogen.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Answer the following.
(a) Write out the electronic configuration of the ground state for nitrogen
(Z = 7).
1s22s22p11s22s22p2 1s22s22p31s22s22p41s22s22p51s22s22p6
(b) Write out the values for the set of quantum numbers n, ℓ, m, and ms for each of the electrons in nitrogen. (In cases where there are more than one value, enter the positive value first. Enter positive values without a '+' sign in front of them. Include all possible values.)
1s states
n =
ℓ =
m =
ms =
ms =
2s states
n =
ℓ =
m =
ms =
ms =
2p states
n =
ℓ =
m =
ms =
ms =
m =
ms =
ms =
m =
ms =
ms =
(a) Make a chart showing all possible sets of quantum numbers l and ml for the states of the electron in the hydrogen atom when n = 4. How many combinations are there?
(b) What are the energies of these states?
Consider the seventh excited level of the hydrogen atom.
(a) What is the energy of this level?
(b) What is the largest magnitude of the orbital angular momentum?
(c) What is the largest angle between the orbital angular momentum and the z-axis?
Chapter 41 Solutions
Bundle: Physics For Scientists And Engineers With Modern Physics, 10th + Webassign Printed Access Card For Serway/jewett's Physics For Scientists And Engineers, 10th, Multi-term
Ch. 41.3 - Prob. 41.1QQCh. 41.3 - Prob. 41.2QQCh. 41.4 - Prob. 41.3QQCh. 41.4 - Prob. 41.4QQCh. 41.8 - Prob. 41.5QQCh. 41 - Prob. 1PCh. 41 - Prob. 2PCh. 41 - Prob. 3PCh. 41 - Prob. 4PCh. 41 - Prob. 5P
Ch. 41 - Prob. 6PCh. 41 - Prob. 7PCh. 41 - Prob. 8PCh. 41 - Prob. 9PCh. 41 - Prob. 10PCh. 41 - Prob. 11PCh. 41 - Prob. 13PCh. 41 - Prob. 14PCh. 41 - Prob. 15PCh. 41 - Prob. 16PCh. 41 - Prob. 17PCh. 41 - Prob. 18PCh. 41 - Prob. 19PCh. 41 - Prob. 20PCh. 41 - Prob. 21PCh. 41 - Prob. 23PCh. 41 - Prob. 24PCh. 41 - Prob. 25PCh. 41 - Prob. 26PCh. 41 - Prob. 27PCh. 41 - Prob. 28PCh. 41 - Prob. 29PCh. 41 - Prob. 30PCh. 41 - Prob. 31PCh. 41 - Prob. 32PCh. 41 - Prob. 33PCh. 41 - Prob. 34PCh. 41 - Prob. 35PCh. 41 - Prob. 36PCh. 41 - Prob. 37APCh. 41 - Prob. 39APCh. 41 - Prob. 40APCh. 41 - Prob. 41APCh. 41 - Prob. 42APCh. 41 - Prob. 44APCh. 41 - Prob. 45APCh. 41 - Prob. 46APCh. 41 - Prob. 47APCh. 41 - Prob. 49APCh. 41 - Prob. 50APCh. 41 - Prob. 51CPCh. 41 - Prob. 52CP
Knowledge Booster
Similar questions
- You are working on determining the angle that separates two hybridized orbitals. In the process of determining the coefficients in front of the various atomic orbitals, you align the first one along the z-axis and the second in the x/z-plane (so o = 0). The second hybridized orbital was determined to be: W2 = R1s + R2p, sin 0 + R2p, cos 0 Determine the angle, 0, in degrees to one decimal place (XX.X) that separates these two orbitals. Assume that the angle will be between 0 and 90 degrees.arrow_forwardQuantum Physicsarrow_forwardAnswer the following. (a) Write out the electronic configuration of the ground state for oxygen (Z = 8). 1s22s22p11s22s22p2 1s22s22p31s22s22p41s22s22p51s22s22p6 (b) Write out the values for the set of quantum numbers n, ℓ, m, and ms for each of the electrons in oxygen. (In cases where there are more than one value, enter the positive value first. Enter positive values without a '+' sign in front of them. Include all possible values.) 1s states n = ℓ = m = ms = ms = 2s states n = ℓ = m = ms = ms = 2p states n = ℓ = m = ms = ms = m = ms = ms = m = ms = ms =arrow_forward
- In atomic physics a term means Select an answer and submit. For keyboard navigation, use the up/down arrow keys to select an answer. a All electronic configurations of an atom with the same values of {n, 1} (list of shell and subshells occupied) b с d e All configurations with the same {n, 1} and total orbital angular momentum quantum number L All configurations with the same {n, l}, the same L and the same total spin quantum number S All configurations with the same {n, l}, the same L, S and the same total angular momentum quantum number J All configurations with the same {n, l}, and the same L, S, Jand the same total angular momentum along an axis with quantum number MJarrow_forwardFor what value of the principal quantum number n would the effective radius, as shown in a probability density dot plot for the hydrogen atom, be 1.0 mm? Assume that l has its maximum value of n - 1.arrow_forwardThe energy levels of the Bohr model for the atom can be expressed mathematically as En -13.6 eV, where Z is the atomic number, and n is the quantum number. This model is reasonably accurate for hydrogen and for singly ionized helium. The photon associated with the transition of an electron from the ground state to the first excited state in singly ionized helium has a different wavelength than that associated with a similar transition in hydrogen. Which of the following correctly describes the wavelengths of these two photons in terms of the energy level diagrams for hydrogen and helium? The photon absorbed by hydrogen has a longer wavelength than that absorbed by helium, because the energy levels in the diagram for hydrogen are more closely spaced than in the diagram for helium. B The photon absorbed by hydrogen has a shorter wavelength than that absorbed by helium, because the energy levels in the diagram for hydrogen are more closely spaced than in the diagram for helium. The photon…arrow_forward
- A magnetic field is applied to a freely floating uniform iron sphere with radius R = 2.00 mm. The sphere initially had no net magnetic moment, but the field aligns 12% of the magnetic moments of the atoms (that is, 12% of the magnetic moments of the loosely bound electrons in the sphere, with one such electron per atom). The magnetic moment of those aligned electrons is the sphere’s intrinsic magnetic moment .What is the sphere’s resulting angular speed v?arrow_forwardProblem. (a) A hydrogenic atom's energy levels are E, =-13.6 eV Z2/n2, Use the orbital approximation to estimate the energy of a lithium atom in its ground-state configuration. (b) What is the jonization energy of Li2+ (or the third ionization energy of Li)?arrow_forward(a) What is the magnitude of the orbital angular momentum in a state with e = 2? (b) What is the magnitude of its largest projection on an imposed axis? (a) Number 2.50998008 Units J.s (b) Number 2.11 Units J.sarrow_forward
- Consider the atom having the electron configuration 1s2 2s2 2p6 3s2. Assume that the z components of both the orbital abd spin angular momenta of the electron in the 3p subshell are positive. What are the quantum numbers that describe the state of this electron. n=3 l=1 m=-1 s=1/2n=3 l=1 m=2 s=1/2n=3 l=2 m=1 s=1/2n=3 l=1 m=1 s=1/2n=3 l=2 m=2 s=-1/2 Can we say which one is correct?arrow_forwardZirconium (Z= 40) has two electrons in an incomplete d sub- shell. (a) What are the values of n and e for each electron? (b) What are all possible values of me and m? (c) What is the electron configuration in the ground state of zirconium?arrow_forwardIf we neglect interaction between electrons, the ground state energy of the helium atom is E =2 z2((- e2)/(2ao)) = -108.848eV (Z=2). The true (measured) value is – 79.006eV.Calculate the interaction energy e2/r12 supposing that both electrons are in the 1s state and r12 that the spin wave function is anti-symmetric. What E is the ground state energy?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax