
Concept explainers
(a)
To show: The speed of the nucleus in the centre of mass frame is
(a)

Explanation of Solution
Introduction:
The elastic head-on collision is a type of collision in which the two bodies collide in such a way that target is at rest and its velocity is increased by twice the initial velocity after the collision.
All the elastic collisions follow the conservation laws like Conservation law of momentum and Conservation law of energy.
Write the expression for the conservation of momentum to the elastic head-on collision.
Here,
Simplify the above expression for the velocity of the nucleus after collision.
Conclusion:
Thus, the speed of the nucleus in the centre of mass frame is
(b)
The speed of the stationary nucleus in the centre of mass framebefore and after the collision.
(b)

Explanation of Solution
Introduction:
The elastic head-on collision is a type of collision in which the two bodies collide in such a way that target is at rest and its velocity increased by twice the initial velocity after the collision.
All the elastic collisions follow the conservation laws like Conservation law of momentum and Conservation law of energy and even all the elastic collisions are symmetric for the centre of mass frame of the system.
Since, the neutron with a speed makes an elastic head-on collision with a stationary nucleus, in laboratory frame of reference.
Therefore,
Before collision: The initial velocity of the centre of mass is equal to the velocity of the neutron.
Write the expression for the initial velocity of the nucleus with respect to centre of mass before the collision.
Here,
After collision: The final velocity of the nucleus with respect to centre of mass after the collision
is equal to the velocity of the nucleus.
Write the expression for the final velocity of the nucleus with respect to centre of mass after the collision.
Here,
Conclusion:
Thus, the speed of the stationary nucleus with respect to the centre of mass framebefore and after the collision is
(c)
The speed of the stationary nucleus in the laboratory frame after the collision.
(c)

Explanation of Solution
Introduction:
In laboratory reference frame, the elastic collision of two bodies takes place in such a way thatthe bodies continue to move with their same respective velocities after collision, but in opposite direction.
The law conservation of momentum of two particles in elastic collision states the momentum of the particles before collision must be equal to the momentum of the particles after collision.
Write the expression for the conservation of momentum in laboratory frame of reference.
Here,
The law conservation of energy of the two particles in elastic collision states the kinetic energy of the particles before collision must be equal to the kinetic energy of the particles after collision.
Write the expression for the initial and the final velocities from the law conservation of kinetic energy in laboratory frame of reference.
Here,
Since, initially the nucleus is stationary so its initial velocity of the nucleus with respect to centre of mass before the collision is
Substitute
Substitute
Conclusion:
Thus, the speed of the stationary nucleus in the laboratory frame after the collision is
(d)
The energy of the nucleus after the collision in the laboratory frame is
(d)

Explanation of Solution
Introduction:
In laboratory reference frame, the elastic collision of two bodies takes place in such a way that the bodies continue to move with their same respective velocities after collision, but in opposite direction.
The law conservation of momentum of two particles in elastic collision states the momentum of the particles before collision must be equal to the momentum of the particles after collision.
Write the expression for the conservation of momentum in laboratory frame of reference.
Here,
The law conservation of energy of the two particles in elastic collision states the kinetic energy of the particles before collision must be equal to the kinetic energy of the particles after collision.
Write the expression for the initial and the final velocities from the law conservation of kinetic energy in laboratory frame of reference.
Here,
Since, initially the nucleus is stationary so its initial velocity of the nucleus with respect to centre of mass before the collision is
Substitute
Substitute
Write the expression for the kinetic energy of the nucleus after the collision in the laboratory frame.
Here,
Substitute
Conclusion:
Thus, the energy of the nucleus after the collision in the laboratory frame is
(e)
To show: The fraction of energy lost by the neutron in the head-on elastic collision of neutron and the stationary nucleus is
(e)

Explanation of Solution
The law conservation of momentum of two particles in elastic collision states the momentum of the particles before collision must be equal to the momentum of the particles after collision.
Write the expression for the conservation of momentum in laboratory frame of reference.
Here,
The law conservation of energy of the two particles in elastic collision states the kinetic energy of the particles before collision must be equal to the kinetic energy of the particles after collision.
Write the expression for the initial and the final velocities from the law conservation of kinetic energy in laboratory frame of reference.
Here,
Since, initially the nucleus is stationary so it’s initial velocity of the nucleus with respect to centre of mass before the collision is
Substitute
Substitute
Write the expression for the kinetic energy of the nucleus after the collision in the laboratory frame.
Here,
Substitute
Write the expression for the kinetic energy of the system of the particles before collision.
Here,
Write the expression for the kinetic energy of the system of the particles after collision.
Here,
Write the expression for the energy lost by the neutron in the elastic collision.
Substitute
Substitute
Substitute
Simplify the above expression as:
Simplify further the above expression.
Conclusion:
Thus, the fraction of energy lost by the neutron in the head-on elastic collision of neutron and the stationary nucleus is
Want to see more full solutions like this?
Chapter 40 Solutions
Physics for Scientists and Engineers
- For what type of force is it not possible to define a potential energy expression?arrow_forward10. Imagine you have a system in which you have 54 grams of ice. You can melt this ice and then vaporize it all at 0 C. The melting and vaporization are done reversibly into a balloon held at a pressure of 0.250 bar. Here are some facts about water you may wish to know. The density of liquid water at 0 C is 1 g/cm³. The density of ice at 0 C is 0.917 g/cm³. The enthalpy of vaporization of liquid water is 2.496 kJ/gram and the enthalpy of fusion of solid water is 333.55 J/gram.arrow_forwardConsider 1 mole of supercooled water at -10°C. Calculate the entropy change of the water when the supercooled water freezes at -10°C and 1 atm. Useful data: Cp (ice) = 38 J mol-1 K-1 Cp (water) 75J mol −1 K -1 Afus H (0°C) 6026 J mol −1 Assume Cp (ice) and Cp (water) to be independent of temperature.arrow_forward
- The molar enthalpy of vaporization of benzene at its normal boiling point (80.09°C) is 30.72 kJ/mol. Assuming that AvapH and AvapS stay constant at their values at 80.09°C, calculate the value of AvapG at 75.0°C, 80.09°C, and 85.0°C. Hint: Remember that the liquid and vapor phases will be in equilibrium at the normal boiling point.arrow_forward3. The entropy of an ideal gas is S = Nkg In V. Entropy is a state function rather than a path function, and in this problem, you will show an example of the entropy change for an ideal gas being the same when you go between the same two states by two different pathways. A. Express ASV = S2 (V2) - S₁(V1), the change in entropy upon changing the volume from V₁to V2, at fixed particle number N and energy, U. B. Express ASN = S₂(N₂) - S₁ (N₁), the change in entropy upon changing the particle number from N₁ to N2, at fixed volume V and energy U. C. Write an expression for the entropy change, AS, for a two-step process (V₁, N₁) → (V2, N₁) → (V2, N₂) in which the volume changes first at fixed particle number, then the particle number changes at fixed volume. Again, assume energy is constant.arrow_forwardPlease don't use Chatgpt will upvote and give handwritten solutionarrow_forward
- 6. We used the constant volume heat capacity, Cv, when we talked about thermodynamic cycles. It acts as a proportionality constant between energy and temperature: dU = C₁dT. You can also define a heat capacity for constant pressure processes, Cp. You can think of enthalpy playing a similar role to energy, but for constant pressure processes δαρ C = (37) - Sup Ср ат P = ат Starting from the definition of enthalpy, H = U + PV, find the relationship between Cy and Cp for an ideal gas.arrow_forwardPure membranes of dipalmitoyl lecithin phospholipids are models of biological membranes. They melt = 41°C. Reversible melting experiments indicate that at Tm AHm=37.7 kJ mol-1. Calculate: A. The entropy of melting, ASm- B. The Gibbs free energy of melting, AGm- C. Does the membrane become more or less ordered upon melting? D. There are 32 rotatable CH2 CH2 bonds in each molecule that can rotate more freely if the membrane melts. What is the increase in multiplicity on melting a mole of bonds?arrow_forward5. Heat capacity often has a temperature dependence for real molecules, particularly if you go over a large temperature range. The heat capacity for liquid n-butane can be fit to the equation Cp(T) = a + bT where a = 100 J K₁₁ mol¹ and b = 0.1067 J K² mol¹ from its freezing point (T = 140 K) to its boiling point (T₁ = 270 K). A. Compute AH for heating butane from 170 K to 270 K. B. Compute AS for the same temperature range.arrow_forward
- 4. How much energy must be transferred as heat to cause the quasi-static isothermal expansion of one mole of an ideal gas at 300 K from PA = 1 bar to PB = 0.5 bar? A. What is VA? B. What is VB? C. What is AU for the process? D. What is AH for the process? E. What is AS for the process?arrow_forward1. The diagram shows the tube used in the Thomson experiment. a. State the KE of the electrons. b. Draw the path of the electron beam in the gravitational field of the earth. C. If the electric field directed upwards, deduce the direction of the magnetic field so it would be possible to balance the forces. electron gun 1KVarrow_forwardas a hiker in glacier national park, you need to keep the bears from getting at your food supply. You find a campground that is near an outcropping of ice. Part of the outcropping forms a feta=51.5* slopeup that leads to a verticle cliff. You decide that this is an idea place to hang your food supply out of bear reach. You put all of your food into a burlap sack, tie a rope to the sack, and then tie a bag full of rocks to the other end of the rope to act as an anchor. You currently have 18.5 kg of food left for the rest of your trip, so you put 18.5 kg of rocks in the anchor bag to balance it out. what happens when you lower the food bag over the edge and let go of the anchor bag? Determine the acceleration magnitude a of the two-bag system when you let go of the anchor bag?arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON





