Concept explainers
(a)
To show: The speed of the nucleus in the centre of mass frame is
(a)
Explanation of Solution
Introduction:
The elastic head-on collision is a type of collision in which the two bodies collide in such a way that target is at rest and its velocity is increased by twice the initial velocity after the collision.
All the elastic collisions follow the conservation laws like Conservation law of momentum and Conservation law of energy.
Write the expression for the conservation of momentum to the elastic head-on collision.
Here,
Simplify the above expression for the velocity of the nucleus after collision.
Conclusion:
Thus, the speed of the nucleus in the centre of mass frame is
(b)
The speed of the stationary nucleus in the centre of mass framebefore and after the collision.
(b)
Explanation of Solution
Introduction:
The elastic head-on collision is a type of collision in which the two bodies collide in such a way that target is at rest and its velocity increased by twice the initial velocity after the collision.
All the elastic collisions follow the conservation laws like Conservation law of momentum and Conservation law of energy and even all the elastic collisions are symmetric for the centre of mass frame of the system.
Since, the neutron with a speed makes an elastic head-on collision with a stationary nucleus, in laboratory frame of reference.
Therefore,
Before collision: The initial velocity of the centre of mass is equal to the velocity of the neutron.
Write the expression for the initial velocity of the nucleus with respect to centre of mass before the collision.
Here,
After collision: The final velocity of the nucleus with respect to centre of mass after the collision
is equal to the velocity of the nucleus.
Write the expression for the final velocity of the nucleus with respect to centre of mass after the collision.
Here,
Conclusion:
Thus, the speed of the stationary nucleus with respect to the centre of mass framebefore and after the collision is
(c)
The speed of the stationary nucleus in the laboratory frame after the collision.
(c)
Explanation of Solution
Introduction:
In laboratory reference frame, the elastic collision of two bodies takes place in such a way thatthe bodies continue to move with their same respective velocities after collision, but in opposite direction.
The law conservation of momentum of two particles in elastic collision states the momentum of the particles before collision must be equal to the momentum of the particles after collision.
Write the expression for the conservation of momentum in laboratory frame of reference.
Here,
The law conservation of energy of the two particles in elastic collision states the kinetic energy of the particles before collision must be equal to the kinetic energy of the particles after collision.
Write the expression for the initial and the final velocities from the law conservation of kinetic energy in laboratory frame of reference.
Here,
Since, initially the nucleus is stationary so its initial velocity of the nucleus with respect to centre of mass before the collision is
Substitute
Substitute
Conclusion:
Thus, the speed of the stationary nucleus in the laboratory frame after the collision is
(d)
The energy of the nucleus after the collision in the laboratory frame is
(d)
Explanation of Solution
Introduction:
In laboratory reference frame, the elastic collision of two bodies takes place in such a way that the bodies continue to move with their same respective velocities after collision, but in opposite direction.
The law conservation of momentum of two particles in elastic collision states the momentum of the particles before collision must be equal to the momentum of the particles after collision.
Write the expression for the conservation of momentum in laboratory frame of reference.
Here,
The law conservation of energy of the two particles in elastic collision states the kinetic energy of the particles before collision must be equal to the kinetic energy of the particles after collision.
Write the expression for the initial and the final velocities from the law conservation of kinetic energy in laboratory frame of reference.
Here,
Since, initially the nucleus is stationary so its initial velocity of the nucleus with respect to centre of mass before the collision is
Substitute
Substitute
Write the expression for the kinetic energy of the nucleus after the collision in the laboratory frame.
Here,
Substitute
Conclusion:
Thus, the energy of the nucleus after the collision in the laboratory frame is
(e)
To show: The fraction of energy lost by the neutron in the head-on elastic collision of neutron and the stationary nucleus is
(e)
Explanation of Solution
The law conservation of momentum of two particles in elastic collision states the momentum of the particles before collision must be equal to the momentum of the particles after collision.
Write the expression for the conservation of momentum in laboratory frame of reference.
Here,
The law conservation of energy of the two particles in elastic collision states the kinetic energy of the particles before collision must be equal to the kinetic energy of the particles after collision.
Write the expression for the initial and the final velocities from the law conservation of kinetic energy in laboratory frame of reference.
Here,
Since, initially the nucleus is stationary so it’s initial velocity of the nucleus with respect to centre of mass before the collision is
Substitute
Substitute
Write the expression for the kinetic energy of the nucleus after the collision in the laboratory frame.
Here,
Substitute
Write the expression for the kinetic energy of the system of the particles before collision.
Here,
Write the expression for the kinetic energy of the system of the particles after collision.
Here,
Write the expression for the energy lost by the neutron in the elastic collision.
Substitute
Substitute
Substitute
Simplify the above expression as:
Simplify further the above expression.
Conclusion:
Thus, the fraction of energy lost by the neutron in the head-on elastic collision of neutron and the stationary nucleus is
Want to see more full solutions like this?
Chapter 40 Solutions
Physics for Scientists and Engineers, Vol. 1
- Lab Assignment #3 Vectors 2. Determine the magnitude and sense of the forces in cables A and B. 30° 30° 300KN 3. Determine the forces in members A and B of the following structure. 30° B 200kN Name: TA: 4. Determine the resultant of the three coplanar forces using vectors. F₁ =500N, F₂-800N, F, 900N, 0,-30°, 62-50° 30° 50° F₁ = 500N = 900N F₂ = 800Narrow_forwardLab Assignment #3 Vectors Name: TA: 1. With the equipment provided in the lab, determine the magnitude of vector A so the system is in static equilibrium. Perform the experiment as per the figure below and compare the calculated values with the numbers from the spring scale that corresponds to vector A. A Case 1: Vector B 40g Vector C 20g 0 = 30° Vector A = ? Case 2: Vector B 50g Vector C = 40g 0 = 53° Vector A ? Case 3: Vector B 50g Vector C 30g 0 = 37° Vector A = ?arrow_forwardThree point-like charges are placed at the corners of an equilateral triangle as shown in the figure. Each side of the triangle has a length of 20.0 cm, and the point (A) is located half way between q1 and q2 along the side. Find the magnitude of the electric field at point (A). Let q1=-1.30 µC, q2=-4.20µC, and q3= +4.30 µC. __________________ N/Carrow_forward
- Find the total capacitance in micro farads of the combination of capacitors shown in the figure below. 2.01 0.30 µF 2.5 µF 10 μF × HFarrow_forwardI do not understand the process to answer the second part of question b. Please help me understand how to get there!arrow_forwardRank the six combinations of electric charges on the basis of the electric force acting on 91. Define forces pointing to the right as positive and forces pointing to the left as negative. Rank in increasing order by placing the most negative on the left and the most positive on the right. To rank items as equivalent, overlap them. ▸ View Available Hint(s) [most negative 91 = +1nC 92 = +1nC 91 = -1nC 93 = +1nC 92- +1nC 93 = +1nC -1nC 92- -1nC 93- -1nC 91= +1nC 92 = +1nC 93=-1nC 91 +1nC 92=-1nC 93=-1nC 91 = +1nC 2 = −1nC 93 = +1nC The correct ranking cannot be determined. Reset Help most positivearrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON