EBK PHYSICS FOR SCIENTISTS AND ENGINEER
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
6th Edition
ISBN: 9781319321710
Author: Mosca
Publisher: VST
Question
Book Icon
Chapter 40, Problem 67P

(a)

To determine

The wavelength of a particle in the ground state of a one-dimensional infinite square well.

(a)

Expert Solution
Check Mark

Explanation of Solution

Given:

The length of the one-dimensional infinite square well is 2.00fm .

Formula used:

Write the expression for the wavelength of a particle in the ground state of a one-dimensional infinite square well.

  λ=2L   ........ (1)

Here, λ is the wavelength of the particle and L is the length of the one-dimensional infinite square well.

Calculation:

Substitute 2.00fm for L in equation (1).

  λ=2(2.00fm)=4.00fm

Conclusion:

Thus, the wavelength of a particle in the ground state of a one-dimensional infinite square well is 4.00fm .

(b)

To determine

The momentum of a particle in the ground state of a one-dimensional infinite square well.

(b)

Expert Solution
Check Mark

Explanation of Solution

Given:

The length of the one-dimensional infinite square well is 2.00fm .

Formula used:

Write the expression for the wavelength of a particle in the ground state of a one-dimensional infinite square well.

  λ=2L   ........ (1)

Here, λ is the wavelength of the particle and L is the length of the one-dimensional infinite square well.

Write the de Broglie relation for the momentum.

  p=hλ

Here, p is the momentum of the particle and h is the Planck’s constant.

Multiplying numerator and denominator by c in the above expression.

  p=hcλc   ........ (2)

Here, c is the speed of light.

Calculation:

Substitute 2.00fm for L in equation (1).

  λ=2(2.00fm)=4.00fm

Substitute 4.00fm for λ and 1240MeVfm for hc in equation (2).

  p=( 1240MeVfm)( 4.00fm)c=310MeV/c

Conclusion:

Thus, the momentum of a particle in the ground state of a one-dimensional infinite square well is 310MeV/c .

(c)

To determine

To show: The total energy of an electron in the ground state of a one-dimensional infinite square well is approximately pc .

(c)

Expert Solution
Check Mark

Explanation of Solution

Given:

The length of the one-dimensional infinite square well is 2.00fm .

Formula used:

Write the expression for the wavelength of a particle in the ground state of a one-dimensional infinite square well.

  λ=2L   ........ (1)

Here, λ is the wavelength of the particle and L is the length of the one-dimensional infinite square well.

Write the de Broglie relation for the momentum.

  p=hλ

Here, p is the momentum of the particle and h is the Planck’s constant.

Multiplying numerator and denominator by c in the above expression.

  p=hcλc   ........ (2)

Here, c is the speed of light.

Write the expression for the total energy of the electron.

  E2=E02+p2c2=p2c2(1+ E 0 2 p 2 c 2 )   ........ (3)

Here, E is the total energy of the electron and E0 is the rest energy of the electron.

Calculation:

Substitute 2.00fm for L in equation (1).

  λ=2(2.00fm)=4.00fm

Substitute 4.00fm for λ and 1240MeVfm for hc in equation (2).

  p=( 1240MeVfm)( 4.00fm)c=310MeV/c

Substitute 310MeV/c for p in (1+E02p2c2) .

  (1+ E 0 2 p 2 c 2 )=(1+ E 0 2 ( 310MeV/c ) 2 c 2 )E02<<p2c2and(1+ E 0 2 p 2 c 2 )1

Substitute 1 for (1+E02p2c2) in equation (3).

  E2p2c2

Simplify the above expression for the total energy of the electron.

  Epc

Conclusion:

Thus, the total energy of an electron in the ground state of a one-dimensional infinite square well is approximately pc .

(d)

To determine

The kinetic energy of an electron in the ground state of a one-dimensional infinite square well.

(d)

Expert Solution
Check Mark

Explanation of Solution

Given:

The length of the one-dimensional infinite square well is 2.00fm .

Formula used:

Write the expression for the wavelength of a particle in the ground state of a one-dimensional infinite square well.

  λ=2L   ........ (1)

Here, λ is the wavelength of the particle and L is the length of the one-dimensional infinite square well.

Write the de Broglie relation for the momentum.

  p=hλ

Here, p is the momentum of the particle and h is the Planck’s constant.

Multiplying numerator and denominator by c in the above expression.

  p=hcλc   ........ (2)

Here, c is the speed of light.

Write the expression for the total energy of the electron.

  E2=E02+p2c2=p2c2(1+ E 0 2 p 2 c 2 )   ........ (3)

Here, E is the total energy of the electron and E0 is the rest energy of the electron.

Calculation:

Substitute 2.00fm for L in equation (1).

  λ=2(2.00fm)=4.00fm

Substitute 4.00fm for λ and 1240MeVfm for hc in equation (2).

  p=( 1240MeVfm)( 4.00fm)c=310MeVc

Substitute 310MeV/c for p in (1+E02p2c2) .

  (1+ E 0 2 p 2 c 2 )=(1+ E 0 2 ( 310 MeV c ) 2 c 2 )E02<<p2c2and(1+ E 0 2 p 2 c 2 )1

Substitute 1 for (1+E02p2c2) in equation (3).

  E2p2c2

Simplify the above expression for the total energy of the electron.

  Epc

Write the expression for the kinetic energy of an electron in the ground state of a one-dimensional infinite square well.

  K=EE0E

Here, K is the kinetic energy of an electron in the ground state of the well.

Substitute pc for E in the above expression.

  K=pc   ........ (4)

Substitute 310MeV/c for p in equation (4).

  K=(310 MeVc)c=310MeV

Conclusion:

Thus, the kinetic energy of an electron in the ground state of a one-dimensional infinite square well is 310MeV .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
a cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?
Calculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were:  222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33   Give in the answer window the calculated repeated experiment variance in m/s2.
No chatgpt pls will upvote
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON