bartleby

Concept explainers

Question
100%
Book Icon
Chapter 40, Problem 42AP

(a)

To determine

Allowed energies of a two dimensional potential well in terms of quantum numbers.

(b)

To determine

The quantum numbers for the ground state energy.

(c)

To determine

The ground state energy.

(d)

To determine

The quantum numbers for the first excited state energy.

(e)

To determine

The quantum numbers for the second excited state energy.

(f)

To determine

The second excited state energy.

(g)

To determine

The energy difference between the second excited state and the ground state.

(f)

To determine

The required wavelength of photon for transition between the ground state and the second excited state.

Blurred answer
Students have asked these similar questions
An electron is confined to move in the xy plane in a rectangle whose dimensions are Lx and Ly. That is, the electron is trapped in a two dimensional potential well having lengths of Lx and Ly. In this situation, the allowed energies of the electron depend on two quantum numbers nx and ny and are given by                                             E = h2/8me (nx2/Lx2 + ny2/Ly2)Using this information, we wish to find the wavelength of a photon needed to excite the electron from the ground state to the second excited state, assuming Lx = Ly = L. (a) Using the assumption on the lengths, write an expression for the allowed energies of the electron in terms of the quantumnumbers nx and ny. (b) What values of nx and ny correspond to the ground state? (c) Find the energy of the ground state. (d) What are the possible values of nx and ny for the first excited state, that is, the next-highest state in terms of energy? (e) What are the possible values of nx and ny for thesecond excited state?…
An electron moves with a speed v 1.25 x 10-4c inside a one-dimensional box (V = 0) of length 48.5 nm. The potential is infi nite elsewhere. The particle may not escape the box. What approximate quantum number does the electron have?
A thin solid barrier in the xy-plane has a 12.6µm diameter circular hole. An electron traveling in the z-direction with vx 0.00m/s passes through the hole. Afterward, within what range is vx likely to be?
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax