
Electric Motor Control
10th Edition
ISBN: 9781133702818
Author: Herman
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 40, Problem 1SQ
What are the two basic functions of synchronous motor control?
Expert Solution & Answer

To determine
Explain the two primary functions of the synchronous motor control.
Explanation of Solution
Two basic functions of the synchronous motor control in starting are as follows:
- (1) To start the motor as an induction motor by use of induction motor starting schemes. In this, the motor connects across the supplying line or to the starter output terminals. The starters that are used to start the motor as an induction motor are based on the size of the motor.
- (2) Synchronization process of the motor by the DC field (rotor) excitation to bring the motor to the synchronous speed is the second basic function. In starting of the synchronous motor two voltages are required, AC and DC for the stator and the rotor respectively.
Conclusion:
Thus, the two primary functions of synchronous motor control are explained.
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Design a fuel-cell – Supercapacitor hybrid locomotive with 640 horsepower and a traveling range of 500 km per fully charged hydrogen tank, and consumption rate of 500 Wh/km. The fuel cell provides the driving range and supercapacitor captures the regenerative breaking energy to run the accessories. Assume fuel cell efficiency at 50%. 1hoursepower = 750 W
Calculate the size (volume in liter) of a pressurized hydrogen storage tank at 700 bar pressure to deliver the traveling range for the vehicle. Fuel cell voltage at the cell level is 1V.
Calculate the volume of solid-state hydrogen storage tank for the vehicle if the solid NaAlH4 is used as a hydrogen storage material. The density of NaAlH4 is 2.8 g/cm3.
Atomic weights: Na=23g, Al=27g, and H=1g
Calculate the total amount of platinum catalyst loading inside the fuel cell stack, and cost of catalyst if Pt cost as $30/g. Assume catalyst loading on the anodes at 0.02mg/cm2 and 0.04mg/cm2 on the…
4. Design an operational amplifier circuit to implement the following mathematical equation.
0.25
dv
dtt
dvo
+ ·+ V₁ = Vi
dt
solve and show work
Chapter 40 Solutions
Electric Motor Control
Ch. 40 - What are the two basic functions of synchronous...Ch. 40 - Prob. 2SQCh. 40 - If all of the control circuits are ACand DC is not...Ch. 40 - When the rotor and stator fields lock into step,...Ch. 40 - Prob. 5SQCh. 40 - Prob. 6SQCh. 40 - In Figure 402, approximately what is the...Ch. 40 - Why are the AC ammeter and DC meter necessary in...Ch. 40 - Prob. 9SQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Problem 4 Consider a unity (negative) feedback system whose open-loop transfer function is given by K(s+1)(s+2) G(s): s(s +10) Assume K = 1. (a) What is the type of the system? (b) Find static position error constant Kp, static velocity error constant Ky and static acceleration error constant Ka (c) Find the steady state-error of the system for following each of the following inputs. (i) (!!) t³ 1(t) (t+2) 1(t) (d) Find the range of K, for which steady-state error of the system for ramp input will be less than 0.05?arrow_forwardAn inner-city metro-bus weighs approximately 10,000 kg including passenger loads, travels 500 km per fully charged battery, and consumes 420 Wh/km. Design a lithium-ion battery pack for the metro-bus using newly developed cells made of silicon anode and lithium manganese-iron phosphate (LMFP) with formulation of Si // 4(LiMn5Fe0.5PO4). The cell average voltage is 3.5V and its capacity 4Ah. The nominal battery pack voltage is 350V. Report the battery pack configuration: Calculate the amount of silicon and LMFP cathode that is required for a single cell at 4Ah capacity. Atomic weight of elements in gram: Si=28 , Li=7, Mn=55, Fe=56, P=31, and O=16. If the building block cell is designed in a cylindrical format (2cm diameter and 10 cm height), calculate the energy density (Wh/lit) and specific energy (Wh/kg) at the cell level and at the battery pack level. Assume cell weight 100g, and cells are arranged in two layers in the battery pack with top…arrow_forwardProblem 2 Consider the following feedback control system. (i) (ii) K(s+2) s(s + 1)(s+3) 5+6 5+7 Use Routh-Hurwitz criterion to find the range of K for which the closed-loop system is stable. Using the Routh table from part (a), find the range of K for which the closed-loop system will have one pole in the ORHP and rest of the poles in the OLHP. This implies there will be only one sign changes in the 1st column.arrow_forward
- Problem 3 Consider the following system where x(t) denotes displacement of the mass from its equilibrium position and u(t) denotes the force applied to the mass. 28 N/m -0000-5 kg. u(t) -x(t) 5 N-s/m (a) Find the transfer function of the system. (b) Is the system internally stable (marginally or strictly) and BIBO stable? (c) Find the settling time, rise time, peak time and percent overshoot for the step-response of the system.arrow_forwardSolve this problem and show all of the workarrow_forwardSolve this problem and show all of the workarrow_forward
- 12.31 The voltage source in the circuit of Fig. P12.31 is, given by vs(t)= [105u(t)] V. Determine i̟L (t) for t≥0, given that R₁ =1, R2 = 12, L = 2 H, and C = 1 F. vs(t) R₁ R₂ iL L Figure P12.31 Circuit for Problems 12.31 and 12.35.arrow_forward1. Explain how the battery management systems (BMS), maintain the cell balancing in the battery pack, and draw the schematic (circuit) of one of the cell balancing method . 2. Describe the basic operation of Proton Exchange Membrane Fuel Cell (PEMFC), (PEMFC)including reactions at the anode and cathode and role of Membrane Electrode Assembly (MEA) of the PEM-Fuel Cell.arrow_forwardPlease show a diagram of the implementation with NAND gates (iii) and the decoder (vii) THANK YOU!!!arrow_forward
- Solve this problem and show all of the workarrow_forward12.22 Repeat Problem 12.21, Determine iL(t) in the circuit of Fig. P12.21 for t ≥ 0, but assume that the switch hadbeen open for a long time and then closed at t = 0. Set the dcsource at 12 mV and the element values at R0 = 5 Ω, R1 = 10 Ω,R2 = 20 Ω, L = 2 H, and C = 0.4 F.arrow_forwardQ: An engineer works at a power plant with outdated equipment, causing frequent breakdowns. The engineer was asked the following questions: 1. How do you contribute to improving the plant's operation? How will this impact electricity supply to consumers? 2. Are the procedures of the engineers working at the plant consistenɩ with engineering ethics? 3. Which of the engineering ethics theories support continued work at the plant, and which of them constitute a violation of professional ethics? 4. If work at the plant complies with the engineering code, what are the supporting points in your field of work?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Delmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningElectricity for Refrigeration, Heating, and Air C...Mechanical EngineeringISBN:9781337399128Author:Russell E. SmithPublisher:Cengage Learning


Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning

Electricity for Refrigeration, Heating, and Air C...
Mechanical Engineering
ISBN:9781337399128
Author:Russell E. Smith
Publisher:Cengage Learning
Working of Synchronous Motor; Author: Lesics;https://www.youtube.com/watch?v=Vk2jDXxZIhs;License: Standard Youtube License