Measuring coefficients of friction A coin is placed near one edge of a book lying on a table, and that edge of the book is lifted until the coin just slips down the incline as shown in Figure P4.82. The angle of the incline, θ C , called the critical angle, is measured. (a) Draw a free-body diagram for the coin when it is on the verge of slipping and identify all forces acting on it. Your free-body diagram should include a force of static friction acting up the incline. (b) Is the magnitude of the friction force equal to μ s n for angles less than θ C ? Explain. What can you definitely say about the magnitude of the friction force for any angle θ ≤ θ c ? (c) Show that the coefficient of static friction is given by μ s = tan θ c . (d) Once the coin starts to slide down the incline, the angle can be adjusted to a new value θ c ’ ≤ θ c such that the coin moves down the incline with constant speed. How does observation enable you to obtain the coefficient of kinetic friction? Figure P4.82
Measuring coefficients of friction A coin is placed near one edge of a book lying on a table, and that edge of the book is lifted until the coin just slips down the incline as shown in Figure P4.82. The angle of the incline, θ C , called the critical angle, is measured. (a) Draw a free-body diagram for the coin when it is on the verge of slipping and identify all forces acting on it. Your free-body diagram should include a force of static friction acting up the incline. (b) Is the magnitude of the friction force equal to μ s n for angles less than θ C ? Explain. What can you definitely say about the magnitude of the friction force for any angle θ ≤ θ c ? (c) Show that the coefficient of static friction is given by μ s = tan θ c . (d) Once the coin starts to slide down the incline, the angle can be adjusted to a new value θ c ’ ≤ θ c such that the coin moves down the incline with constant speed. How does observation enable you to obtain the coefficient of kinetic friction? Figure P4.82
Solution Summary: The author explains how the friction force, normal force and weight are the forces acting on the coin.
Measuring coefficients of friction A coin is placed near one edge of a book lying on a table, and that edge of the book is lifted until the coin just slips down the incline as shown in Figure P4.82. The angle of the incline, θC, called the critical angle, is measured. (a) Draw a free-body diagram for the coin when it is on the verge of slipping and identify all forces acting on it. Your free-body diagram should include a force of static friction acting up the incline. (b) Is the magnitude of the friction force equal to μsn for angles less than θC? Explain. What can you definitely say about the magnitude of the friction force for any angle θ ≤ θc? (c) Show that the coefficient of static friction is given by μs = tan θc. (d) Once the coin starts to slide down the incline, the angle can be adjusted to a new value θc’ ≤ θc such that the coin moves down the incline with constant speed. How does observation enable you to obtain the coefficient of kinetic friction?
Figure P4.82
Definition Definition Force that opposes motion when the surface of one item rubs against the surface of another. The unit of force of friction is same as the unit of force.
The de-excitation of a state occurs by competing emission and relaxation processes. If the relaxation mechanisms are very effective:a) the emission of radiation is largeb) the emission of radiation is smallc) the emission occurs at a shorter wavelengthd) the de-excitation occurs only by emission processes
m
C
A block of mass m slides down a ramp of height hand
collides with an identical block that is initially at rest.
The two blocks stick together and travel around a loop of
radius R without losing contact with the track. Point A is
at the top of the loop, point B is at the end of a horizon-
tal diameter, and point C is at the bottom of the loop, as
shown in the figure above. Assume that friction between
the track and blocks is negligible.
(a) The dots below represent the two connected
blocks at points A, B, and C. Draw free-body dia-
grams showing and labeling the forces (not com
ponents) exerted on the blocks at each position.
Draw the relative lengths of all vectors to reflect
the relative magnitude of the forces.
Point A
Point B
Point C
(b) For each of the following, derive an expression in
terms of m, h, R, and fundamental constants.
i. The speed of moving block at the bottom of
the ramp, just before it contacts the stationary
block
ii. The speed of the two blocks immediately…
The velocity of an elevator is given by the graph shown.
Assume the positive direction is upward.
Velocity (m/s)
3.0
2.5
2.0
1.5
1.0
0.5
0
0
5.0
10
15
20
25
Time (s)
(a) Briefly describe the motion of the elevator.
Justify your description with reference to the
graph.
(b) Assume the elevator starts from an initial position
of y = 0 at t=0. Deriving any numerical values
you
need from the graph:
i. Write an equation for the position as a
function of time for the elevator from
t=0 to t = 3.0 seconds.
ii. Write an equation for the position as a
function of time for the elevator from t = 3.0
seconds to t = 19 seconds.
(c) A student of weight mg gets on the elevator
and rides the elevator during the time interval
shown in the graph. Consider the force of con-
tact, F, between the floor and the student. How
Justify your answer with reference to the graph
does F compare to mg at the following times?
and your equations above.
i. = 1.0 s
ii. = 10.0 s
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.