Use zero- through fourth-order Taylor series expansions to predict
To calculate: The approximate value of
Answer to Problem 6P
Solution:
The zero first, second, third and fourth order Taylor series approximations for the function
The result shows that theTaylor series approximation could be generalised as,
Explanation of Solution
Given Information:
The function
Formula Used:
The Taylor series approximation of
Calculation:
Consider the zero-order approximation for the provided function,
Now replace 2.5 for
The zero order approximation gives 0.
The exact value of the function at 2.5 would be:
Thus, the true relative percentage error would be:
The relative percentage error at this stage is 100%.
The first-order Taylor series approximation would be:
Now replace 2.5 for
The first order approximation gives 1.5.
Thus,
The relative percentage error at this stage is 38.91%.
The second-order Taylor series approximation would be:
Now replace 2.5 for
The second order approximation gives 0.375.
Thus,
The relative percentage error at this stage is 59.07%.
The third-order Taylor series approximation would be:
Now replace 2.5 for
The third order approximation gives 1.5.
Thus,
The relative percentage error at this stage is 63.7%
The fourth-order Taylor series approximation would be:
Now replace 2.5 for
The third order approximation gives 0.2344.
Thus,
The relative percentage error at this stage is 74.42%.
This implies that the Taylor series approximation could be generalised as,
Want to see more full solutions like this?
Chapter 4 Solutions
EBK NUMERICAL METHODS FOR ENGINEERS
Additional Engineering Textbook Solutions
Math in Our World
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Probability And Statistical Inference (10th Edition)
Elementary Statistics: Picturing the World (7th Edition)
Precalculus
Finite Mathematics for Business, Economics, Life Sciences and Social Sciences
- Repeat Example 5 when microphone A receives the sound 4 seconds before microphone B.arrow_forwardThe formula for the amount A in an investmentaccount with a nominal interest rate r at any timet is given by A(t)=a(e)rt, where a is the amount ofprincipal initially deposited into an account thatcompounds continuously. Prove that the percentageof interest earned to principal at any time t can becalculated with the formula I(t)=ert1.arrow_forward1. Estimate the value of e? using Taylor series f(x) = e*, a = 1 %3Darrow_forward
- (1 point) Write the Taylor series for f(æ) = sin(x) at z = as Find the first five coefficients. C2= C3=arrow_forwardQ.1 Find the Taylor series of the cubic function x3 about x=3. Write the final formula of the function.arrow_forwardUse a calculator to estimate the value of f (1.3) = (1.3) * ln(1.3) to 6 decimal places, and find the actual error |Rn (x)| resulting from using your estimates in part (b). How does this actual error compare to the upper bound on the error that you found in part (c)?arrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning