If your car is stuck in the mud and you don't have a winch to pull it out, you can use a piece of rope and a tree to do the trick. First, you tie one end of the rope to your car and the other to a tree, then pull as hard as you can on the middle of the rope, as shown in Figure P4.68 a. This technique applies a force to the car much larger than the force that you can apply directly. To see why the car experiences such a large force, look at the forces acting on the center point of the rope, as shown in Figure P4.68 b. The sum of the forces is zero, thus the tension is much greater than the force you apply. It is this tension force that acts on the car and, with luck, pulls it free. Figure P4.68 69. When you are pulling on the rope as shown, what is the approximate direction of the tension force on the tree? A. North B. South C. East D. West
If your car is stuck in the mud and you don't have a winch to pull it out, you can use a piece of rope and a tree to do the trick. First, you tie one end of the rope to your car and the other to a tree, then pull as hard as you can on the middle of the rope, as shown in Figure P4.68 a. This technique applies a force to the car much larger than the force that you can apply directly. To see why the car experiences such a large force, look at the forces acting on the center point of the rope, as shown in Figure P4.68 b. The sum of the forces is zero, thus the tension is much greater than the force you apply. It is this tension force that acts on the car and, with luck, pulls it free. Figure P4.68 69. When you are pulling on the rope as shown, what is the approximate direction of the tension force on the tree? A. North B. South C. East D. West
If your car is stuck in the mud and you don't have a winch to pull it out, you can use a piece of rope and a tree to do the trick. First, you tie one end of the rope to your car and the other to a tree, then pull as hard as you can on the middle of the rope, as shown in Figure P4.68 a. This technique applies a force to the car much larger than the force that you can apply directly. To see why the car experiences such a large force, look at the forces acting on the center point of the rope, as shown in Figure P4.68 b. The sum of the forces is zero, thus the tension is much greater than the force you apply. It is this tension force that acts on the car and, with luck, pulls it free.
Figure P4.68
69. When you are pulling on the rope as shown, what is the approximate direction of the tension force on the tree?
10:44 AM Fri Jan 31
O Better endurance
Limb end points travel less
D
Question 2
Take Quiz
1 pt:
Two springs are arranged in series, and the whole arrangement is pulled a vertical distance of 2
cm. If the force in Spring A is 10 N, what is the force in Spring B as a result of the
displacement?
05N
5 N
0.2 N
10 N
O2N
Question 3
1 pts
No chatgpt pls will upvote Already got wrong chatgpt
Plz no chatgpt pls will upvote
Chapter 4 Solutions
College Physics: A Strategic Approach Technology Update, Books a la Carte Plus Mastering Physics with Pearson eText -- Access Card Package (3rd Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.