
CALCULUS SINGLE VAR W/ACCESS >CI<
8th Edition
ISBN: 9781305764583
Author: Stewart
Publisher: CENGAGE C
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 5P
To determine
To calculate: The value of the function
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
5. The graph of ƒ is given below. Sketch a graph of f'.
6. The graph of ƒ is given below. Sketch a graph of f'.
0
x
7. The graph of ƒ is given below. List the x-values where f is not differentiable.
0
A
2
4
2. DRAW a picture, label using variables to represent each component, set up an
equation to relate the variables, then differentiate the equation to solve the
problem below.
The top of a ladder slides down a vertical wall at a rate of 0.15 m/s. At the moment when the
bottom of the ladder is 3 m from the wall, it slides away from the wall at a rate of 0.2 m/s. How
long is the ladder?
Please answer all questions and show full credit please
Chapter 4 Solutions
CALCULUS SINGLE VAR W/ACCESS >CI<
Ch. 4.1 - Prob. 1ECh. 4.1 - (a) Use six rectangles to find estimates of each...Ch. 4.1 - (a) Estimate the area under the graph of f(x) =...Ch. 4.1 - Prob. 4ECh. 4.1 - (a) Estimate the area under the graph of f(x) = 1...Ch. 4.1 - Prob. 6ECh. 4.1 - Prob. 7ECh. 4.1 - Prob. 8ECh. 4.1 - With a programmable calculator (or a computer), it...Ch. 4.1 - With a programmable calculator (or a computer), it...
Ch. 4.1 - Prob. 11ECh. 4.1 - Prob. 12ECh. 4.1 - The speed of a runner increased steadily during...Ch. 4.1 - Prob. 14ECh. 4.1 - Oil leaked from a tank at a rate of r(t) liters...Ch. 4.1 - Prob. 16ECh. 4.1 - The velocity graph of a braking car is shown. Use...Ch. 4.1 - The velocity graph of a car accelerating from rest...Ch. 4.1 - In someone infected with measles, the virus level...Ch. 4.1 - The table shows the number of people per day who...Ch. 4.1 - Use Definition 2 to find an expression for the...Ch. 4.1 - Prob. 22ECh. 4.1 - Use Definition 2 to find an expression for the...Ch. 4.1 - Prob. 24ECh. 4.1 - Prob. 25ECh. 4.1 - (a) Use Definition 2 to find an expression for the...Ch. 4.1 - Let A be the area under the graph of an increasing...Ch. 4.1 - If A is the area under the curve y = sin x from 0...Ch. 4.1 - (a) Express the area under the curve y = x5 from 0...Ch. 4.1 - (a) Express the area under the curve y = x4 + 5x2...Ch. 4.1 - Prob. 31ECh. 4.1 - (a) Let An be the area of a polygon with n equal...Ch. 4.2 - Evaluate the Riemann sum for f(x)=x1,6x4, with...Ch. 4.2 - If f(x)=cosx0x3/4 evaluate the Riemann sum with n...Ch. 4.2 - If f(x)=x24,0x3, find the Riemann sum with n = 6,...Ch. 4.2 - (a) Find the Riemann sum for f(x)=1/x,1x2, with...Ch. 4.2 - The graph of a function f is given. Estimate...Ch. 4.2 - The graph of g is shown. Estimate 24g(x)dx with...Ch. 4.2 - A table of values of an increasing function f is...Ch. 4.2 - Prob. 8ECh. 4.2 - Prob. 9ECh. 4.2 - Prob. 10ECh. 4.2 - Prob. 11ECh. 4.2 - Prob. 12ECh. 4.2 - If you have a CAS that evaluates midpoint...Ch. 4.2 - Prob. 14ECh. 4.2 - Prob. 15ECh. 4.2 - Prob. 16ECh. 4.2 - Express the limit as a definite integral on the...Ch. 4.2 - Express the limit as a definite integral on the...Ch. 4.2 - Express the limit as a definite integral on the...Ch. 4.2 - Prob. 20ECh. 4.2 - Use the form of the definition of the integral...Ch. 4.2 - Use the form of the definition of the integral...Ch. 4.2 - Use the form of the definition of the integral...Ch. 4.2 - Use the form of the definition of the integral...Ch. 4.2 - Use the form of the definition of the integral...Ch. 4.2 - Prob. 26ECh. 4.2 - Prove that abxdx=b2a22.Ch. 4.2 - Prob. 28ECh. 4.2 - Prob. 29ECh. 4.2 - Prob. 30ECh. 4.2 - Express the integral as a limit of sums. Then...Ch. 4.2 - Prob. 32ECh. 4.2 - The graph of f is shown. Evaluate each integral by...Ch. 4.2 - The graph of g consists of two straight lines and...Ch. 4.2 - Evaluate the integral by interpreting it in terms...Ch. 4.2 - Evaluate the integral by interpreting it in terms...Ch. 4.2 - Evaluate the integral by interpreting it in terms...Ch. 4.2 - Evaluate the integral by interpreting it in terms...Ch. 4.2 - Prob. 39ECh. 4.2 - Evaluate the integral by interpreting it in terms...Ch. 4.2 - Prob. 41ECh. 4.2 - Give that 0sin4xdx=38, what is 0sin4d?Ch. 4.2 - In Example 4.1.2 we showed that 01x2dx=13. Use...Ch. 4.2 - Prob. 44ECh. 4.2 - Prob. 45ECh. 4.2 - Prob. 46ECh. 4.2 - Prob. 47ECh. 4.2 - If 28f(x)dx=7.3 and 24f(x)dx=5.9, find 48f(x)dx.Ch. 4.2 - Prob. 49ECh. 4.2 - Prob. 50ECh. 4.2 - Prob. 51ECh. 4.2 - Prob. 52ECh. 4.2 - Prob. 53ECh. 4.2 - Suppose f has absolute minimum value m and...Ch. 4.2 - Prob. 55ECh. 4.2 - Prob. 56ECh. 4.2 - Use the properties of integrals to verify the...Ch. 4.2 - Prob. 58ECh. 4.2 - Prob. 59ECh. 4.2 - Prob. 60ECh. 4.2 - Prob. 61ECh. 4.2 - Prob. 62ECh. 4.2 - Prob. 63ECh. 4.2 - Prob. 64ECh. 4.2 - Prob. 65ECh. 4.2 - Prob. 66ECh. 4.2 - Prob. 67ECh. 4.2 - Prob. 68ECh. 4.2 - Prob. 69ECh. 4.2 - Prob. 70ECh. 4.2 - Prob. 71ECh. 4.2 - Prob. 72ECh. 4.2 - Express the limit as a definite integral. 73....Ch. 4.2 - Prob. 74ECh. 4.2 - Prob. 75ECh. 4.3 - Explain exactly what is meant by the statement...Ch. 4.3 - Prob. 2ECh. 4.3 - Let g(x)=0xf(t)dt, where f is the function whose...Ch. 4.3 - Prob. 4ECh. 4.3 - Sketch the area represented by g(x). Then find...Ch. 4.3 - Prob. 6ECh. 4.3 - Use Part 1 of the Fundamental Theorem of Calculus...Ch. 4.3 - Prob. 8ECh. 4.3 - Use Part 1 of the Fundamental Theorem of Calculus...Ch. 4.3 - Prob. 10ECh. 4.3 - Use Part 1 of the Fundamental Theorem of Calculus...Ch. 4.3 - Prob. 12ECh. 4.3 - Use Part 1 of the Fundamental Theorem of Calculus...Ch. 4.3 - Use Part 1 of the Fundamental Theorem of Calculus...Ch. 4.3 - Use Part 1 of the Fundamental Theorem of Calculus...Ch. 4.3 - Prob. 16ECh. 4.3 - Use Part 1 of the Fundamental Theorem of Calculus...Ch. 4.3 - Prob. 18ECh. 4.3 - Evaluate the integral. 19. 13(x2+2x4)dxCh. 4.3 - Prob. 20ECh. 4.3 - Prob. 21ECh. 4.3 - Prob. 22ECh. 4.3 - Evaluate the integral. 23. 19xdxCh. 4.3 - Prob. 24ECh. 4.3 - Evaluate the integral. 25. /6sindCh. 4.3 - Prob. 26ECh. 4.3 - Evaluate the integral. 27. 01(u+2)(u3)duCh. 4.3 - Prob. 28ECh. 4.3 - Evaluate the integral. 29. 142+x2xdxCh. 4.3 - Prob. 30ECh. 4.3 - Evaluate the integral. 31. /6/2csctcottdtCh. 4.3 - Prob. 32ECh. 4.3 - Prob. 33ECh. 4.3 - Prob. 34ECh. 4.3 - Evaluate the integral. 35. 12v5+3v6v4dvCh. 4.3 - Prob. 36ECh. 4.3 - Prob. 37ECh. 4.3 - Prob. 38ECh. 4.3 - Prob. 39ECh. 4.3 - Prob. 40ECh. 4.3 - Prob. 41ECh. 4.3 - Prob. 42ECh. 4.3 - Use a graph to give a rough estimate of the area...Ch. 4.3 - Prob. 44ECh. 4.3 - Prob. 45ECh. 4.3 - Use a graph to give a rough estimate of the area...Ch. 4.3 - Prob. 47ECh. 4.3 - Prob. 48ECh. 4.3 - Prob. 49ECh. 4.3 - Prob. 50ECh. 4.3 - Prob. 51ECh. 4.3 - Prob. 52ECh. 4.3 - Prob. 53ECh. 4.3 - Prob. 54ECh. 4.3 - Prob. 55ECh. 4.3 - Prob. 56ECh. 4.3 - Prob. 57ECh. 4.3 - If f(x)=0x(1t2)cos2tdt, on what interval is f...Ch. 4.3 - On what interval is the curve y=0xt2t2+t+2dt...Ch. 4.3 - Prob. 60ECh. 4.3 - Prob. 61ECh. 4.3 - Prob. 62ECh. 4.3 - The Fresnel function S was defined in Example 3...Ch. 4.3 - The sine integral function Si(x)=0xsinttdt is...Ch. 4.3 - Let g(x)=0xf(t)dt, where f is the function whose...Ch. 4.3 - Let g(x)=0xf(t)dt, where f is the function whose...Ch. 4.3 - Prob. 67ECh. 4.3 - Prob. 68ECh. 4.3 - Prob. 69ECh. 4.3 - Prob. 70ECh. 4.3 - Prob. 71ECh. 4.3 - (a) Show that cos(x2) cos x for 0 x 1. (b)...Ch. 4.3 - Show that 0510x2x4+x2+1dx0.1 by comparing the...Ch. 4.3 - Let f(x)={0ifx0xif0x12xif1x20ifx2 and...Ch. 4.3 - Find a function f and a number a such that...Ch. 4.3 - Prob. 76ECh. 4.3 - A manufacturing company owns a major piece of...Ch. 4.3 - A high-tech company purchases a new computing...Ch. 4.3 - Evaluate the integral. 79. 1912xdxCh. 4.3 - Prob. 80ECh. 4.3 - Prob. 81ECh. 4.3 - Prob. 82ECh. 4.3 - Prob. 83ECh. 4.3 - Prob. 84ECh. 4.4 - Verify by differentiation that the formula is...Ch. 4.4 - Verify by differentiation that the formula is...Ch. 4.4 - Prob. 3ECh. 4.4 - Prob. 4ECh. 4.4 - Find the general indefinite integral. 5....Ch. 4.4 - Prob. 6ECh. 4.4 - Find the general indefinite integral. 7....Ch. 4.4 - Prob. 8ECh. 4.4 - Find the general indefinite integral. 9....Ch. 4.4 - Prob. 10ECh. 4.4 - Find the general indefinite integral. 11. 1+x+xxdxCh. 4.4 - Prob. 12ECh. 4.4 - Find the general indefinite integral. 13....Ch. 4.4 - Prob. 14ECh. 4.4 - Find the general indefinite integral. 15....Ch. 4.4 - Prob. 16ECh. 4.4 - Find the general indefinite integral. Illustrate...Ch. 4.4 - Prob. 18ECh. 4.4 - Evaluate the integral. 19. 23(x23)dxCh. 4.4 - Prob. 20ECh. 4.4 - Evaluate the integral. 21. 20(12t4+14t3t)dtCh. 4.4 - Prob. 22ECh. 4.4 - Evaluate the integral. 23. 02(2x3)(4x2+1)dxCh. 4.4 - Prob. 24ECh. 4.4 - Evaluate the integral. 25. 0(4sin3cos)dCh. 4.4 - Prob. 26ECh. 4.4 - Prob. 27ECh. 4.4 - Prob. 28ECh. 4.4 - Prob. 29ECh. 4.4 - Prob. 30ECh. 4.4 - Prob. 31ECh. 4.4 - Prob. 32ECh. 4.4 - Prob. 33ECh. 4.4 - Prob. 34ECh. 4.4 - Prob. 35ECh. 4.4 - Prob. 36ECh. 4.4 - Prob. 37ECh. 4.4 - Prob. 38ECh. 4.4 - Prob. 39ECh. 4.4 - Prob. 40ECh. 4.4 - Prob. 41ECh. 4.4 - Prob. 42ECh. 4.4 - Prob. 43ECh. 4.4 - Repeat Exercise 43 for the curve y = 2x + 3x4 ...Ch. 4.4 - The area of the region that lies to the right of...Ch. 4.4 - Prob. 46ECh. 4.4 - If w'(t) is the rate of growth of a child in...Ch. 4.4 - Prob. 48ECh. 4.4 - If oil leaks from a tank at a rate of r(t) gallons...Ch. 4.4 - A honeybee population starts with 100 bees and...Ch. 4.4 - In Section 3.7 we defined the marginal revenue...Ch. 4.4 - Prob. 52ECh. 4.4 - If x is measured in meters and f(x) is measured in...Ch. 4.4 - If the units for x are feet and the units for a(x)...Ch. 4.4 - The velocity function (in meters per second) is...Ch. 4.4 - The velocity function (in meters per second) is...Ch. 4.4 - Prob. 57ECh. 4.4 - Prob. 58ECh. 4.4 - The linear density of a rod of length 4 m is given...Ch. 4.4 - Water flows from the bottom of a storage tank at a...Ch. 4.4 - Prob. 61ECh. 4.4 - Suppose that a volcano is erupting and readings of...Ch. 4.4 - Prob. 63ECh. 4.4 - Prob. 64ECh. 4.4 - The graph of the acceleration a(t) of a car...Ch. 4.4 - Shown is the graph of traffic on an Internet...Ch. 4.4 - The following graph shows the power consumption in...Ch. 4.4 - Prob. 68ECh. 4.4 - Evaluate the integral. 69. (sinx+sinhx)dxCh. 4.4 - Prob. 70ECh. 4.4 - Prob. 71ECh. 4.4 - Prob. 72ECh. 4.4 - Prob. 73ECh. 4.4 - The area labeled B is three times the area labeled...Ch. 4.5 - Evaluate the integral by making the given...Ch. 4.5 - Prob. 2ECh. 4.5 - Evaluate the integral by making the given...Ch. 4.5 - Prob. 4ECh. 4.5 - Evaluate the integral by making the given...Ch. 4.5 - Prob. 6ECh. 4.5 - Evaluate the indefinite integral. 7. x1x2dxCh. 4.5 - Prob. 8ECh. 4.5 - Evaluate the indefinite integral. 9. (12x)9dxCh. 4.5 - Prob. 10ECh. 4.5 - Evaluate the indefinite integral. 11. sin(2/3)dCh. 4.5 - Prob. 12ECh. 4.5 - Evaluate the indefinite integral. 13. sec3ttan3tdtCh. 4.5 - Prob. 14ECh. 4.5 - Evaluate the indefinite integral. 15. cos(1+5t)dtCh. 4.5 - Prob. 16ECh. 4.5 - Evaluate the indefinite integral. 17. sec2tan3dCh. 4.5 - Prob. 18ECh. 4.5 - Evaluate the indefinite integral. 19....Ch. 4.5 - Prob. 20ECh. 4.5 - Prob. 21ECh. 4.5 - Evaluate the indefinite integral. 22. cos(/x)x2dxCh. 4.5 - Evaluate the indefinite integral. 23. z21+z33dzCh. 4.5 - Prob. 24ECh. 4.5 - Evaluate the indefinite integral. 25. cotxcsc2xdxCh. 4.5 - Prob. 26ECh. 4.5 - Evaluate the indefinite integral. 27. sec3xtanxdxCh. 4.5 - Prob. 28ECh. 4.5 - Evaluate the indefinite integral. 29. x(2x+5)8dxCh. 4.5 - Prob. 30ECh. 4.5 - Prob. 31ECh. 4.5 - Prob. 32ECh. 4.5 - Prob. 33ECh. 4.5 - Prob. 34ECh. 4.5 - Evaluate the definite integral. 35. 01cos(t/2)dtCh. 4.5 - Prob. 36ECh. 4.5 - Evaluate the definite integral. 37. 011+7x3dxCh. 4.5 - Prob. 38ECh. 4.5 - Prob. 39ECh. 4.5 - Prob. 40ECh. 4.5 - Prob. 41ECh. 4.5 - Prob. 42ECh. 4.5 - Evaluate the definite integral. 43. 013dx(1+2x)23Ch. 4.5 - Prob. 44ECh. 4.5 - Evaluate the definite integral. 45. 0axx2+a2dx(a0)Ch. 4.5 - Prob. 46ECh. 4.5 - Evaluate the definite integral. 47. 12xx1dxCh. 4.5 - Prob. 48ECh. 4.5 - Evaluate the definite integral. 49....Ch. 4.5 - Prob. 50ECh. 4.5 - Prob. 51ECh. 4.5 - Prob. 52ECh. 4.5 - Use a graph to give a rough estimate of the area...Ch. 4.5 - Use a graph to give a rough estimate of the area...Ch. 4.5 - Prob. 55ECh. 4.5 - Prob. 56ECh. 4.5 - Breathing is cyclic and a full respiratory cycle...Ch. 4.5 - A model for the basal metabolism rate, in kcal/h,...Ch. 4.5 - Prob. 59ECh. 4.5 - Prob. 60ECh. 4.5 - Prob. 61ECh. 4.5 - Prob. 62ECh. 4.5 - If a and b are positive numbers, show that...Ch. 4.5 - If f is continuous on [0, ], use the substitution...Ch. 4.5 - If f is continuous, prove that...Ch. 4.5 - Prob. 66ECh. 4.5 - Prob. 67ECh. 4.5 - Prob. 68ECh. 4.5 - Prob. 69ECh. 4.5 - Prob. 70ECh. 4.5 - Prob. 71ECh. 4.5 - Prob. 72ECh. 4.5 - Prob. 73ECh. 4.5 - Prob. 74ECh. 4.5 - Prob. 75ECh. 4.5 - Evaluate the integral. 76. sin(lnx)xdxCh. 4.5 - Prob. 77ECh. 4.5 - Prob. 78ECh. 4.5 - Prob. 79ECh. 4.5 - Prob. 80ECh. 4.5 - Prob. 81ECh. 4.5 - Prob. 82ECh. 4.5 - Evaluate the integral. 83. 01ez+1ez+zdzCh. 4.5 - Prob. 84ECh. 4.5 - Prob. 85ECh. 4 - (a) Write an expression for a Riemann sum of a...Ch. 4 - (a) Write the definition of the definite integral...Ch. 4 - State the Midpoint Rule.Ch. 4 - State both parts of the Fundamental Theorem of...Ch. 4 - (a) State the Net Change Theorem. (b) If r(t) is...Ch. 4 - Suppose a particle moves back and forth along a...Ch. 4 - Prob. 7RCCCh. 4 - Explain exactly what is meant by the statement...Ch. 4 - Prob. 9RCCCh. 4 - Prob. 1RQCh. 4 - Prob. 2RQCh. 4 - Prob. 3RQCh. 4 - Prob. 4RQCh. 4 - Prob. 5RQCh. 4 - Prob. 6RQCh. 4 - Prob. 7RQCh. 4 - Prob. 8RQCh. 4 - Prob. 9RQCh. 4 - Determine whether the statement is true or false....Ch. 4 - Prob. 11RQCh. 4 - Prob. 12RQCh. 4 - Prob. 13RQCh. 4 - Prob. 14RQCh. 4 - Prob. 15RQCh. 4 - Prob. 16RQCh. 4 - Prob. 17RQCh. 4 - Determine whether the statement is true or false....Ch. 4 - Use the given graph of f to find the Riemann sum...Ch. 4 - Prob. 2RECh. 4 - Prob. 3RECh. 4 - Prob. 4RECh. 4 - Prob. 5RECh. 4 - Prob. 6RECh. 4 - The figure shows the graphs of f,f, and 0xf(t)dt....Ch. 4 - Evaluate: (a) 0/2ddx(sinx2cosx3)dx (b)...Ch. 4 - Prob. 9RECh. 4 - Prob. 10RECh. 4 - Prob. 11RECh. 4 - Prob. 12RECh. 4 - Prob. 13RECh. 4 - Prob. 14RECh. 4 - Prob. 15RECh. 4 - Prob. 16RECh. 4 - Prob. 17RECh. 4 - Prob. 18RECh. 4 - Prob. 19RECh. 4 - Prob. 20RECh. 4 - Prob. 21RECh. 4 - Prob. 22RECh. 4 - Prob. 23RECh. 4 - Prob. 24RECh. 4 - Prob. 25RECh. 4 - Prob. 26RECh. 4 - Prob. 27RECh. 4 - Prob. 28RECh. 4 - Prob. 29RECh. 4 - Prob. 30RECh. 4 - Prob. 31RECh. 4 - Prob. 32RECh. 4 - Prob. 33RECh. 4 - Prob. 34RECh. 4 - Prob. 35RECh. 4 - Prob. 36RECh. 4 - Prob. 37RECh. 4 - Prob. 38RECh. 4 - Prob. 39RECh. 4 - Prob. 40RECh. 4 - Prob. 41RECh. 4 - Prob. 42RECh. 4 - Prob. 43RECh. 4 - Prob. 44RECh. 4 - Prob. 45RECh. 4 - A particle moves along a line with velocity...Ch. 4 - Prob. 47RECh. 4 - Prob. 48RECh. 4 - A population of honeybees increased at a rate of...Ch. 4 - Prob. 50RECh. 4 - If f is continuous and 02f(x)dx=6, evaluate...Ch. 4 - The Fresnel function S(x)=0xsin(12t2)dt was...Ch. 4 - Prob. 53RECh. 4 - Prob. 54RECh. 4 - Prob. 55RECh. 4 - Prob. 56RECh. 4 - If f is continuous on [0, 1], prove that...Ch. 4 - Prob. 58RECh. 4 - Prob. 1PCh. 4 - Prob. 2PCh. 4 - Prob. 3PCh. 4 - (a) Graph several members of the family of...Ch. 4 - Prob. 5PCh. 4 - If f(x)=0xx2sin(t2)dt, find f(x).Ch. 4 - Prob. 7PCh. 4 - Prob. 8PCh. 4 - Prob. 9PCh. 4 - Find d2dx20x(1sint1+u4du)dt.Ch. 4 - Suppose the coefficients of the cubic polynomial...Ch. 4 - Prob. 12PCh. 4 - Prob. 13PCh. 4 - The figure shows a parabolic segment, that is. a...Ch. 4 - Prob. 15PCh. 4 - Prob. 16PCh. 4 - Evaluate limn(1nn+1+1nn+2++1nn+n).Ch. 4 - For any number c, we let fc(x) be the smaller of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- please solve with full steps pleasearrow_forward4. Identify at least two mistakes in Francisco's work. Correct the mistakes and complete the problem by using the second derivative test. 2f 2X 2. Find the relative maximum and relative minimum points of f(x) = 2x3 + 3x² - 3, using the First Derivative Test or the Second Derivative Test. bx+ bx 6x +6x=0 12x- af 24 = 0 x=0 108 -2 5. Identify at least three mistakes in Francisco's work. Then sketch the graph of the function and label the local max and local min. 1. Find the equation of the tangent line to the curve y=x-2x3+x-2 at the point (1.-2). Sketch the araph of y=x42x3+x-2 and the tangent line at (1,-2) y' = 4x-6x y' (1) = 4(1) - 667 - 2 = 4(-2)4127-6(-2) 5-8-19-20 =arrow_forward۳/۱ R2X2 2) slots per pole per phase = 3/31 B=18060 msl Ka, Sin (1) Kdl Isin ( sin(30) Sin (30) اذا ميريد شرح الكتب بس 0 بالفراغ 3) Cos (30) 0.866 4) Rotating 120*50 5) Synchronous speed, 120 x 50 S1000-950 1000 Copper losses 5kw 50105 Rotor input 5 0.05 loo kw 6) 1 1000rpm اذا ميريد شرح الكتب فقط Look = 7) rotov DC ined sove in peaper PU + 96er Which of the following is converge, and which diverge? Give reasons for your answers with details. When your answer then determine the convergence sum if possible. 3" 6" Σ=1 (2-1) π X9arrow_forward
- 1 R2 X2 2) slots per pole per phase = 3/31 B = 180 - 60 msl Kd Kol, Sin (no) Isin (6) 2 sin(30) Sin (30) اذا ميريد شرح الكتب بس 0 بالفراغ 3) Cos (30) 0.866 4) Rotating 5) Synchronous speed; 120*50 Looo rem G S = 1000-950 solos 1000 Copper losses: 5kw Rotor input: 5 loo kw 0.05 1 اذا میرید شرح الكتب فقط look 7) rotor DC ined sove in pea PU+96er Q2// Find the volume of the solid bounded above by the cynnuer 2=6-x², on the sides by the cylinder x² + y² = 9, and below by the xy-plane. Q041 Convert 2 2x-2 Lake Gex 35 w2x-xབོ ,4-ཙཱཔ-y √4-x²-yz 21xy²dzdydx to(a) cylindrical coordinates, (b) Spherical coordinates. 201 25arrow_forwardshow full work pleasearrow_forward3. Describe the steps you would take to find the absolute max of the following function using Calculus f(x) = : , [-1,2]. Then use a graphing calculator to x-1 x²-x+1 approximate the absolute max in the closed interval.arrow_forward
- (7) (12 points) Let F(x, y, z) = (y, x+z cos yz, y cos yz). Ꮖ (a) (4 points) Show that V x F = 0. (b) (4 points) Find a potential f for the vector field F. (c) (4 points) Let S be a surface in R3 for which the Stokes' Theorem is valid. Use Stokes' Theorem to calculate the line integral Jos F.ds; as denotes the boundary of S. Explain your answer.arrow_forward(3) (16 points) Consider z = uv, u = x+y, v=x-y. (a) (4 points) Express z in the form z = fog where g: R² R² and f: R² → R. (b) (4 points) Use the chain rule to calculate Vz = (2, 2). Show all intermediate steps otherwise no credit. (c) (4 points) Let S be the surface parametrized by T(x, y) = (x, y, ƒ (g(x, y)) (x, y) = R². Give a parametric description of the tangent plane to S at the point p = T(x, y). (d) (4 points) Calculate the second Taylor polynomial Q(x, y) (i.e. the quadratic approximation) of F = (fog) at a point (a, b). Verify that Q(x,y) F(a+x,b+y). =arrow_forward(6) (8 points) Change the order of integration and evaluate (z +4ry)drdy . So S√ ² 0arrow_forward
- (10) (16 points) Let R>0. Consider the truncated sphere S given as x² + y² + (z = √15R)² = R², z ≥0. where F(x, y, z) = −yi + xj . (a) (8 points) Consider the vector field V (x, y, z) = (▼ × F)(x, y, z) Think of S as a hot-air balloon where the vector field V is the velocity vector field measuring the hot gasses escaping through the porous surface S. The flux of V across S gives the volume flow rate of the gasses through S. Calculate this flux. Hint: Parametrize the boundary OS. Then use Stokes' Theorem. (b) (8 points) Calculate the surface area of the balloon. To calculate the surface area, do the following: Translate the balloon surface S by the vector (-15)k. The translated surface, call it S+ is part of the sphere x² + y²+z² = R². Why do S and S+ have the same area? ⚫ Calculate the area of S+. What is the natural spherical parametrization of S+?arrow_forward(1) (8 points) Let c(t) = (et, et sint, et cost). Reparametrize c as a unit speed curve starting from the point (1,0,1).arrow_forward(9) (16 points) Let F(x, y, z) = (x² + y − 4)i + 3xyj + (2x2 +z²)k = - = (x²+y4,3xy, 2x2 + 2²). (a) (4 points) Calculate the divergence and curl of F. (b) (6 points) Find the flux of V x F across the surface S given by x² + y²+2² = 16, z ≥ 0. (c) (6 points) Find the flux of F across the boundary of the unit cube E = [0,1] × [0,1] x [0,1].arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning

Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning
03a: Numerical Differentiation Review; Author: Jaisohn Kim;https://www.youtube.com/watch?v=IMYsqbV4CEg;License: Standard YouTube License, CC-BY