Concept explainers
(a)
Interpretation:
A balanced equation for the reaction of atmospheric oxygen with ethane has to be written. Also, when
(a)

Explanation of Solution
Given:
Atmospheric oxygen reacts with ethane to produce water and carbon dioxide as product.
Balanced equation:
The balanced chemical equation for the given reaction is written as,
The given moles of ethane is
From the balanced equation, it is known that two moles of ethane reacts and gives six moles of water. The molar ratio is
Calculate the moles of water produced from one mole of ethane as follows,
Therefore, the number of moles of water produced is
(b)
Interpretation:
A balanced equation for the reaction of atmospheric oxygen with ethylene has to be written. Also, when
(b)

Explanation of Solution
Given:
Atmospheric oxygen reacts with ethylene to produce water and carbon dioxide as product.
Balanced equation:
The balanced chemical equation for the given reaction is written as,
The given moles of ethylene is
From the balanced equation, it is known that one mole of ethylene reacts and gives two moles of water. The molar ratio is
Calculate the moles of water produced from one mole of ethylene as follows,
Therefore, the number of moles of water produced is
(c)
Interpretation:
The number of moles of
Concept Introduction:
Moles:
Mole of the substance is found by dividing the mass of the substance by its molar mass.
(c)

Explanation of Solution
Given:
Atmospheric oxygen reacts with ethylene to produce water and carbon dioxide as product.
The amount of
The balanced chemical equation for the given reaction is written as,
The molar mass of ethylene is
Determine the moles of ethylene present in given amount of ethylene as follows,
The number of moles of ethylene used in reaction is
(d)
Interpretation:
The number of molecules of
Concept Introduction:
Steps to find number of molecules from mass:
(d)

Explanation of Solution
Given:
Atmospheric oxygen reacts with ethylene to produce water and carbon dioxide as product.
The amount of
The balanced chemical equation for the given reaction is written as,
The molar mass of ethylene is
Determine the moles of ethylene present in given amount of ethylene as follows,
The number of moles of ethylene used in reaction is
The number of molecules is found as follows,
Therefore, the number of molecules of
(e)
Interpretation:
The number of moles of each products produced by the reaction of
Concept Introduction:
Refer subpart (c).
(e)

Explanation of Solution
Given:
Atmospheric oxygen reacts with ethylene to produce water and carbon dioxide as product.
The amount of
The balanced chemical equation for the given reaction is written as,
The molar mass of ethylene is
Determine the moles of ethylene present in given amount of ethylene as follows,
The number of moles of ethylene used in reaction is
From balanced equation, it is known that two moles of water and two moles of carbon dioxide are produced from one mole of ethylene. The molar ratio is,
The number of moles of each product produced can be calculated as below.
Therefore, the number of moles of
(f)
Interpretation:
The amount (in
Concept Introduction:
Mass:
Mass of the compound is calculated by mole of the compound multiplied with molar mass of the compound.
(f)

Explanation of Solution
Given:
Atmospheric oxygen reacts with ethylene to produce water and carbon dioxide as product.
The amount of
The balanced chemical equation for the given reaction is written as,
From subpart (e), the moles of each product (water and carbon dioxide) formed are found as
The molar mass of
Determine the mass of
The molar mass of
Determine the mass of
Therefore, the mass of products produced are
(g)
Interpretation:
The actual yield of the given reaction when it is
(g)

Explanation of Solution
Given:
Atmospheric oxygen reacts with ethylene to produce water and carbon dioxide as product.
The amount of
The balanced chemical equation for the given reaction is written as,
From subpart (f), the mass
Therefore, the total yield of products is
The actual yield when the reaction is only
Therefore, the actula yield of the reaction is only
Want to see more full solutions like this?
Chapter 4 Solutions
GENERAL,ORGANIC,+BIOCHEMISTRY
- (c) (4pts) Mechanism: heat (E1) CH3OH + 1.5pts each _E1 _ (1pt) Br CH3OH (d) (4pts) Mechanism: SN1 (1pt) (e) (3pts) 1111 I H 10 Ill!! H LDA THF (solvent) Mechanism: E2 (1pt) NC (f) Bri!!!!! CH3 NaCN (3pts) acetone Mechanism: SN2 (1pt) (SN1) -OCH3 OCH3 1.5pts each 2pts for either product 1pt if incorrect stereochemistry H Br (g) “,、 (3pts) H CH3OH +21 Mechanism: SN2 (1pt) H CH3 2pts 1pt if incorrect stereochemistry H 2pts 1pt if incorrect stereochemistryarrow_forwardA mixture of butyl acrylate and 4'-chloropropiophenone has been taken for proton NMR analysis. Based on this proton NMR, determine the relative percentage of each compound in the mixturearrow_forwardQ5: Label each chiral carbon in the following molecules as R or S. Make sure the stereocenter to which each of your R/S assignments belong is perfectly clear to the grader. (8pts) R OCH 3 CI H S 2pts for each R/S HO R H !!! I OH CI HN CI R Harrow_forward
- Calculate the proton and carbon chemical shifts for this structurearrow_forwardA. B. b. Now consider the two bicyclic molecules A. and B. Note that A. is a dianion and B. is a neutral molecule. One of these molecules is a highly reactive compound first characterized in frozen noble gas matrices, that self-reacts rapidly at temperatures above liquid nitrogen temperature. The other compound was isolated at room temperature in the early 1960s, and is a stable ligand used in organometallic chemistry. Which molecule is the more stable molecule, and why?arrow_forwardWhere are the chiral centers in this molecule? Also is this compound meso yes or no?arrow_forward
- PLEASE HELP! URGENT!arrow_forwardWhere are the chiral centers in this molecule? Also is this compound meso yes or no?arrow_forwardA mixture of C7H12O2, C9H9OCl, biphenyl and acetone was put together in a gas chromatography tube. Please decide from the GC resutls which correspond to the peak for C7,C9 and biphenyl and explain the reasoning based on GC results. Eliminate unnecessary peaks from Gas Chromatography results.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





