Concept explainers
(a)
Interpretation:
A balanced equation for the reaction of atmospheric oxygen with ethane has to be written. Also, when
(a)

Explanation of Solution
Given:
Atmospheric oxygen reacts with ethane to produce water and carbon dioxide as product.
Balanced equation:
The balanced chemical equation for the given reaction is written as,
The given moles of ethane is
From the balanced equation, it is known that two moles of ethane reacts and gives six moles of water. The molar ratio is
Calculate the moles of water produced from one mole of ethane as follows,
Therefore, the number of moles of water produced is
(b)
Interpretation:
A balanced equation for the reaction of atmospheric oxygen with ethylene has to be written. Also, when
(b)

Explanation of Solution
Given:
Atmospheric oxygen reacts with ethylene to produce water and carbon dioxide as product.
Balanced equation:
The balanced chemical equation for the given reaction is written as,
The given moles of ethylene is
From the balanced equation, it is known that one mole of ethylene reacts and gives two moles of water. The molar ratio is
Calculate the moles of water produced from one mole of ethylene as follows,
Therefore, the number of moles of water produced is
(c)
Interpretation:
The number of moles of
Concept Introduction:
Moles:
Mole of the substance is found by dividing the mass of the substance by its molar mass.
(c)

Explanation of Solution
Given:
Atmospheric oxygen reacts with ethylene to produce water and carbon dioxide as product.
The amount of
The balanced chemical equation for the given reaction is written as,
The molar mass of ethylene is
Determine the moles of ethylene present in given amount of ethylene as follows,
The number of moles of ethylene used in reaction is
(d)
Interpretation:
The number of molecules of
Concept Introduction:
Steps to find number of molecules from mass:
(d)

Explanation of Solution
Given:
Atmospheric oxygen reacts with ethylene to produce water and carbon dioxide as product.
The amount of
The balanced chemical equation for the given reaction is written as,
The molar mass of ethylene is
Determine the moles of ethylene present in given amount of ethylene as follows,
The number of moles of ethylene used in reaction is
The number of molecules is found as follows,
Therefore, the number of molecules of
(e)
Interpretation:
The number of moles of each products produced by the reaction of
Concept Introduction:
Refer subpart (c).
(e)

Explanation of Solution
Given:
Atmospheric oxygen reacts with ethylene to produce water and carbon dioxide as product.
The amount of
The balanced chemical equation for the given reaction is written as,
The molar mass of ethylene is
Determine the moles of ethylene present in given amount of ethylene as follows,
The number of moles of ethylene used in reaction is
From balanced equation, it is known that two moles of water and two moles of carbon dioxide are produced from one mole of ethylene. The molar ratio is,
The number of moles of each product produced can be calculated as below.
Therefore, the number of moles of
(f)
Interpretation:
The amount (in
Concept Introduction:
Mass:
Mass of the compound is calculated by mole of the compound multiplied with molar mass of the compound.
(f)

Explanation of Solution
Given:
Atmospheric oxygen reacts with ethylene to produce water and carbon dioxide as product.
The amount of
The balanced chemical equation for the given reaction is written as,
From subpart (e), the moles of each product (water and carbon dioxide) formed are found as
The molar mass of
Determine the mass of
The molar mass of
Determine the mass of
Therefore, the mass of products produced are
(g)
Interpretation:
The actual yield of the given reaction when it is
(g)

Explanation of Solution
Given:
Atmospheric oxygen reacts with ethylene to produce water and carbon dioxide as product.
The amount of
The balanced chemical equation for the given reaction is written as,
From subpart (f), the mass
Therefore, the total yield of products is
The actual yield when the reaction is only
Therefore, the actula yield of the reaction is only
Want to see more full solutions like this?
Chapter 4 Solutions
GENERAL,ORGANIC,+BIOCHEMISTRY
- in the kinetics experiment, what were the values calculated? Select all that apply.a) equilibrium constantb) pHc) order of reactiond) rate contstantarrow_forwardtrue or false, given that a 20.00 mL sample of NaOH took 24.15 mL of 0.141 M HCI to reach the endpoint in a titration, the concentration of the NaOH is 1.17 M.arrow_forwardin the bromothymol blue experiment, pKa was measured. A closely related compound has a Ka of 2.10 x 10-5. What is the pKa?a) 7.1b) 4.7c) 2.0arrow_forward
- calculate the equilibrium concentration of H2 given that K= 0.017 at a constant temperature for this reaction. The inital concentration of HBr is 0.050 M.2HBr(g) ↔ H2(g) + Br2(g)a) 4.48 x 10-2 M b) 5.17 x 10-3 Mc) 1.03 x 10-2 Md) 1.70 x 10-2 Marrow_forwardtrue or falsegiven these two equilibria with their equilibrium constants:H2(g) + CI2(l) ↔ 2HCI(g) K= 0.006 CI2(l) ↔ CI2(g) K= 0.30The equilibrium contstant for the following reaction is 1.8H2(g) + CI2 ↔ 2HCI(g)arrow_forwardI2(g) + CI2(g) ↔ 2ICIK for this reaction is 81.9. Find the equilibrium concentration of I2 if the inital concentration of I2 and CI2 are 0.010 Marrow_forward
- true or false,the equilibrium constant for this reaction is 0.50.PCI5(g) ↔ PCI3(g) + CI2(g)Based on the above, the equilibrium constant for the following reaction is 0.25.2PCI5(g) ↔. 2PCI3(g) + 2CI2(g)arrow_forwardtrue or false, using the following equilibrium, if carbon dioxide is added the equilibrium will shift toward the productsC(s) + CO2(g) ↔ 2CO(g)arrow_forward2S2O2/3- (aq) + I2 (aq) ---> S4O2/6- (aq) +2I- (aq) Experiment I2 (M) S2O3- (M) Initital Rate (M/s) 1 0.01 0.01 0.0004 2 0.01 0.02 0.0004 3 0.02 0.01 0.0008 Calculate the overall order for this reaction using the table data a) 3b) 0c) 2d) 1arrow_forward
- the decomposition of N2O5 is the first order with a half-life of 1.98 minutes. If the inital concentration of N2O5 is 0.200 M, what is the concentration after 6 minutes?a) 0.612 Mb) 0.035 Mc) 0.024 Md) 0.100 Marrow_forward20.00 mL of 0.150 M HCI is titrated with 0.075 M NaOH. What volume of NaOH is needed?a) 50 mLb) 20 mLc) 40 mLd) 26.66 mLarrow_forward20.00 mL of 0.150 M NaOH is titrated with 37.75 mL of HCI. What is the molarity of the HCI?a) 0.150 Mb) 0.079 Mc) 0.025 Md) 0.050 Marrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





