A 30-cm-diameter, 4-m-high cylindrical column of a house made of concrete ( k = 0.79 W/m .K, and α = 5 .94 × 10 -7 m 2 /s, p = 1600 kg/m 3 , and c p = 0 .84 kJ/kg .K) and cooled to 14°C during a cold night is heated again during the day by being exposed to ambient air at an average temperature of 28°C with an average heat transfer coefficient of 14 W/m 2 K. Using the analytical one-term approximation method, determine (a) how long it will take for the column surface temperature to rise to 27°C, (b) the amount of heat transfer until the center temperature reaches to 28°C, and (c) the amount of heat transfer until the surface temperature reaches 27°C.
A 30-cm-diameter, 4-m-high cylindrical column of a house made of concrete ( k = 0.79 W/m .K, and α = 5 .94 × 10 -7 m 2 /s, p = 1600 kg/m 3 , and c p = 0 .84 kJ/kg .K) and cooled to 14°C during a cold night is heated again during the day by being exposed to ambient air at an average temperature of 28°C with an average heat transfer coefficient of 14 W/m 2 K. Using the analytical one-term approximation method, determine (a) how long it will take for the column surface temperature to rise to 27°C, (b) the amount of heat transfer until the center temperature reaches to 28°C, and (c) the amount of heat transfer until the surface temperature reaches 27°C.
A 30-cm-diameter, 4-m-high cylindrical column of a house made of concrete
(
k
=
0.79
W/m
.K, and
α
= 5
.94
×
10
-7
m
2
/s, p = 1600 kg/m
3
, and c
p
= 0
.84 kJ/kg
.K)
and cooled to 14°C during a cold night is heated again during the day by being exposed to ambient air at an average temperature of 28°C with an average heat transfer coefficient of 14 W/m2 K. Using the analytical one-term approximation method, determine (a) how long it will take for the column surface temperature to rise to 27°C, (b) the amount of heat transfer until the center temperature reaches to 28°C, and (c) the amount of heat transfer until the surface temperature reaches 27°C.
2. A flat belt drive consists of two 4-ft diameter cast-iron pulleys spaced 16 ft apart.
A power of 60 hp is transmitted by a pulley whose speed is 380 rev/min. Use a
service factor (Ks) pf 1.1 and a design factor 1.0. The width of the polyamide A-3
belt is 6 in. Use CD=1. Answer the following questions.
(1) What is the total length of the belt according to the given geometry?
(2) Find the centrifugal force (Fc) applied to the belt.
(3) What is the transmitted torque through the pulley system given 60hp?
(4) Using the allowable tension, find the force (F₁) on the tight side. What is the
tension at the loose side (F2) and the initial tension (F.)?
(5) Using the forces, estimate the developed friction coefficient (f)
(6) Based on the forces and the given rotational speed, rate the pulley set. In other
words, what is the horse power that can be transmitted by the pulley system?
(7) To reduce the applied tension on the tight side, the friction coefficient is
increased to 0.75. Find out the…
The tooth numbers for the gear train illustrated are N₂ = 24, N3 = 18, №4 = 30, №6 = 36, and
N₁ = 54. Gear 7 is fixed. If shaft b is turned through 5 revolutions, how many turns will shaft a make?
a
5
[6]
b
CE-112 please solve this problem step by step and give me the correct answer
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
First Law of Thermodynamics, Basic Introduction - Internal Energy, Heat and Work - Chemistry; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=NyOYW07-L5g;License: Standard youtube license