
Concept explainers
(a)
The total flight time of the ball.
(a)

Answer to Problem 56AP
The total fight time of the ball is
Explanation of Solution
The initial velocity is divided into two components that is horizontal and vertical velocity component. At maximum point vertical velocity is zero for this path. The maximum height of the projectile is sixth part of the range.
Write the expression for maximum height of the ball.
Here,
Write the expression for range of the projectile path.
Substitute
Here,
Multiply equation (II) by
Multiply and divide by
The maximum height is one-sixth of range.
Substitute
Simplify the above equation.
Substitute
Simplify and rearrange the above equation as.
At peak point of the projectile path velocity along vertical direction is zero.
Write the expression for final velocity along vertical.
Here,
Initial velocity along vertical is zero.
Substitute
Rearrange the above equation.
The final velocity along vertical is
Substitute
Rearrange the above equation time to reach the peak of the path.
Here,
Substitute
Rearrange the above equation.
Write the expression for the total time of the ball’s flight.
Conclusion:
Substitute
Thus, the total flight time of the ball is
(b)
The speed of the ball at peak point.
(b)

Answer to Problem 56AP
The peak velocity at top point is
Explanation of Solution
At the peak point velocity along vertical is zero and the ball starts to accelerate under gravity in downward direction.
Write the expression for velocity at peak point.
Here,
Conclusion:
Substitute
Thus, the peak velocity at top point is
(c)
The initial vertical component of velocity.
(c)

Answer to Problem 56AP
The initial vertical component is
Explanation of Solution
Write the expression for initial vertical component of velocity.
Here,
Conclusion:
Substitute
Thus, the initial vertical component of velocity is
(d)
The initial speed of the ball.
(d)

Answer to Problem 56AP
The initial speed of the ball is
Explanation of Solution
The initial speed of the ball is given by the square root of the sum of square of horizontal and vertical velocity component.
Write the expression for initial velocity along horizontal.
Here,
Write the expression for initial velocity along vertical.
Here,
Write the expression for the initial speed of ball.
Here,
Conclusion:
Substitute
Substitute
Simplify and solve the above equation.
Thus, the initial speed of the ball is
(e)
The initial angle of the projectile.
(e)

Answer to Problem 56AP
The initial angle of projectile is
Explanation of Solution
The angle of the projectile can be given by the ratio of vertical velocity to the horizontal velocity.
Write the expression for initial angle of projectile as.
Substitute
Here,
Conclusion:
Substitute
Thus, the initial projection angle is
(f)
The greatest height with same initial speed.
(f)

Answer to Problem 56AP
The greatest height at same initial speed is
Explanation of Solution
The maximum height can be achieved by the ball at
Conclusion:
Substitute
Thus, the greatest height at same initial speed is
(g)
The maximum horizontal range.
(g)

Answer to Problem 56AP
The maximum horizontal range is
Explanation of Solution
The maximum horizontal range can be achieved at
Write the expression for maximum range as.
Here,
Conclusion:
Substitute
Thus, the maximum horizontal range is
Want to see more full solutions like this?
Chapter 4 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
- Hi Expert in Physics, Could you please Rewrite thses random equations using good formula of mathematics and explain each Greek alphabet and their meaning in English? Best Regards, Yahyaarrow_forwardHi Expert, I have uploaded picture, could you please name the Greek alphabet and their name in English?arrow_forwardHi Expert in Physics, I have uploaded pictures with respect to some physics equations. Could please name all Greek alphabet and their English name?arrow_forward
- 81 SSM Figure 29-84 shows a cross section of an infinite conducting sheet carrying a current per unit x-length of 2; the current emerges perpendicularly out of the page. (a) Use the Biot-Savart law and symmetry to show that for all points B P P. BD P' Figure 29-84 Problem 81. x P above the sheet and all points P' below it, the magnetic field B is parallel to the sheet and directed as shown. (b) Use Ampere's law to prove that B = ½µλ at all points P and P'.arrow_forwardWhat All equations of Ountum physics?arrow_forwardPlease rewrite the rules of Quantum mechanics?arrow_forward
- Suppose there are two transformers between your house and the high-voltage transmission line that distributes the power. In addition, assume your house is the only one using electric power. At a substation the primary of a step-down transformer (turns ratio = 1:23) receives the voltage from the high-voltage transmission line. Because of your usage, a current of 51.1 mA exists in the primary of the transformer. The secondary is connected to the primary of another step-down transformer (turns ratio = 1:36) somewhere near your house, perhaps up on a telephone pole. The secondary of this transformer delivers a 240-V emf to your house. How much power is your house using? Remember that the current and voltage given in this problem are rms values.arrow_forwardThe human eye is most sensitive to light having a frequency of about 5.5 × 1014 Hz, which is in the yellow-green region of the electromagnetic spectrum. How many wavelengths of this light can fit across a distance of 2.2 cm?arrow_forwardA one-dimensional harmonic oscillator of mass m and angular frequency w is in a heat bath of temperature T. What is the root mean square of the displacement of the oscillator? (In the expressions below k is the Boltzmann constant.) Select one: ○ (KT/mw²)1/2 ○ (KT/mw²)-1/2 ○ kT/w O (KT/mw²) 1/2In(2)arrow_forward
- Two polarizers are placed on top of each other so that their transmission axes coincide. If unpolarized light falls on the system, the transmitted intensity is lo. What is the transmitted intensity if one of the polarizers is rotated by 30 degrees? Select one: ○ 10/4 ○ 0.866 lo ○ 310/4 01/2 10/2arrow_forwardBefore attempting this problem, review Conceptual Example 7. The intensity of the light that reaches the photocell in the drawing is 160 W/m², when 0 = 18°. What would be the intensity reaching the photocell if the analyzer were removed from the setup, everything else remaining the same? Light Photocell Polarizer Insert Analyzerarrow_forwardThe lifetime of a muon in its rest frame is 2.2 microseconds. What is the lifetime of the muon measured in the laboratory frame, where the muon's kinetic energy is 53 MeV? It is known that the rest energy of the muon is 106 MeV. Select one: O 4.4 microseconds O 6.6 microseconds O 3.3 microseconds O 1.1 microsecondsarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





