
(a)
Interpretation:
The given reaction of Salicylic acid with acetic acid for the formation of aspirin has to be balanced.
Concept Introduction:
Balancing the equation:
- There is a Law for conversion of mass in a
chemical reaction i.e., the mass of total amount of the product should be equal to the total mass of the reactants. - First write the skeletal reaction from the given information.
- Then count the number of atoms of each element in reactants as well as products.
- Place suitable coefficients in front of reactants as well as products until the number of atoms on each side (reactants and products) becomes equal.
(a)

Explanation of Solution
Given reaction equation:
Balancing the chemical Equation:
Count the number of atoms on each side of the reaction.
Atom | Reactant side | Product side |
9 | 9 | |
10 | 10 | |
5 | 5 |
Yes, the number of atoms present on each side of the reaction is same. Hence, the given equation is already balanced.
(b)
Interpretation:
For the given reaction, the number of moles of aspirin that would form from
(b)

Explanation of Solution
Given reaction equation:
From the balanced equation, it is known that one mole of salicylic acid forms one mole of aspirin as product. That is,
For the given moles of salicylic acid, the number of moles of aspirin formed is,
Therefore, the number of moles of aspirin produced from given moles of salicylic acid is
(c)
Interpretation:
For the given reaction, the amout (in
Concept Introduction:
Moles:
Mole of the substance is found by dividing the mass of the substance by its molar mass.
Mass:
Mass of the compound is calculated by mole of the compound multiplied with molar mass of the compound.
(c)

Explanation of Solution
Given reaction equation:
From the balanced equation, it is known that one mole of salicylic acid forms one mole of aspirin as product. That is,
For the given moles of salicylic acid, the number of moles of aspirin formed is,
Thus, the number of moles of aspirin produced from given moles of salicylic acid is
The molar mass of aspirin is
Determine the mass of aspirin formed as follows,
Therefore, the amount of aspirin produced from given moles of salicylic acid is
(d)
Interpretation:
For the given reaction, the amout (in
Concept Introduction:
Refer part (c)
(d)

Explanation of Solution
Given reaction equation:
From the balanced equation, it is known that one mole of salicylic acid and one mole of acetic acid forms one mole of aspirin as product. That is,
From the moles of salicylic acid, the moles of acetic acid required is calculated as follows,
Thus, the number of moles of acetic acid that reacts with given moles of salicylic acid is
The molar mass of acetic acid is
Determine the mass of acetic acid required to react is found as follows,
Therefore, the amount of acetic acid required to react with given moles of salicylic acid is
(e)
Interpretation:
The amount (in
Concept Introduction:
Refer part (c)
(e)

Explanation of Solution
Given reaction equation:
The amount of acetic acid required to react with given moles of salicylic acid is
The molar mass of acetic acid is
Determine the moles of acetic acid as follows,
Thus, the moles of acetic acid is
From the balanced equation, it is known that one mole of salicylic acid and one mole of acetic acid forms one mole of aspirin as product. That is,
From the moles of acetic acid, the moles of aspirin formed is calculated as follows,
Thus, the moles of aspirin is
The molar mass of aspirin is
Determine the mass of aspirin formed as follows,
Therefore, the amount of aspirin produced from given moles of salicylic acid is
Want to see more full solutions like this?
Chapter 4 Solutions
General, Organic, and Biochemistry
- CUE COLUMN NOTES (A. Determine Stereoisomers it has ⑤ Identify any meso B compounds cl Br cl -c-c-c-c-¿- 1 CI C- | 2,4-Dichloro-3-bromopentanearrow_forwardThe acid-base chemistry of both EDTA and EBT are important to ensuring that the reactions proceed as desired, thus the pH is controlled using a buffer. What percent of the EBT indicator will be in the desired HIn2- state at pH = 10.5. pKa1 = 6.2 and pKa2 = 11.6 of EBTarrow_forwardWhat does the phrase 'fit for purpose' mean in relation to analytical chemistry? Please provide examples too.arrow_forward
- For each of the substituted benzene molecules below, determine the inductive and resonance effects the substituent will have on the benzene ring, as well as the overall electron-density of the ring compared to unsubstituted benzene. Molecule Inductive Effects Resonance Effects Overall Electron-Density × NO2 ○ donating O donating O withdrawing O withdrawing O electron-rich electron-deficient no inductive effects O no resonance effects O similar to benzene E [ CI O donating withdrawing O no inductive effects Explanation Check ○ donating withdrawing no resonance effects electron-rich electron-deficient O similar to benzene © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center Accesarrow_forwardUnderstanding how substituents activate Rank each of the following substituted benzene molecules in order of which will react fastest (1) to slowest (4) by electrophilic aromatic substitution. Explanation HN NH2 Check X (Choose one) (Choose one) (Choose one) (Choose one) © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center Aarrow_forwardIdentifying electron-donating and electron-withdrawing effects on benzene For each of the substituted benzene molecules below, determine the inductive and resonance effects the substituent will have on the benzene ring, as well as the overall electron-density of the ring compared to unsubstituted benzene. Inductive Effects Resonance Effects Overall Electron-Density Molecule CF3 O donating O donating O withdrawing O withdrawing O no inductive effects O no resonance effects electron-rich electron-deficient O similar to benzene CH3 O donating O withdrawing O no inductive effects O donating O withdrawing Ono resonance effects O electron-rich O electron-deficient O similar to benzene Explanation Check Х © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Centerarrow_forward
- * Hint: Think back to Chem 1 solubility rules. Follow Up Questions for Part B 12. What impact do the following disturbances to a system at equilibrium have on k, the rate constant for the forward reaction? Explain. (4 pts) a) Changing the concentration of a reactant or product. (2 pts) b) Changing the temperature of an exothermic reaction. (2 pts) ofarrow_forwardDraw TWO general chemical equation to prepare Symmetrical and non-Symmetrical ethers Draw 1 chemical reaction of an etherarrow_forwardPlease help me with the following questions for chemistry.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





