Structural Analysis, 5th Edition
Structural Analysis, 5th Edition
5th Edition
ISBN: 9788131520444
Author: Aslam Kassimali
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 4, Problem 46P
To determine

Find the forces in the members of the truss.

Expert Solution & Answer
Check Mark

Explanation of Solution

Given information:

Apply the sign conventions for calculating reactions, forces and moments using the three equations of equilibrium as shown below.

  • For summation of forces along x-direction is equal to zero (Fx=0), consider the forces acting towards right side as positive (+) and the forces acting towards left side as negative ().
  • For summation of forces along y-direction is equal to zero (Fy=0), consider the upward force as positive (+) and the downward force as negative ().
  • For summation of moment about a point is equal to zero (Matapoint=0), consider the clockwise moment as negative and the counter clockwise moment as positive.

Method of joints and section.

The negative value of force in any member indicates compression (C) and the positive value of force in any member indicates Tension (T).

Calculation:

Show the free body diagram of the truss as shown in Figure 1.

Structural Analysis, 5th Edition, Chapter 4, Problem 46P , additional homework tip  1

Refer Figure 1.

Consider the horizontal and vertical reactions at A are Ax and Ay.

Consider the vertical reaction at E is Ey.

Take the sum of the forces in the horizontal direction as zero.

Fx=0Ax+10+10=0Ax=20k

Take the sum of the forces in the vertical direction as zero.

Fy=0Ay+Ey=40+30Ay+Ey=70k        (1)

Take the sum of the moment about point A as zero.

MA=0[(10×20)(10×40)(40×30)(30×45)+(Ey×60)]=0Ey=3,15060Ey=52.5k

Substitute 52.5k for Ey in Equation (1).

Ay+52.5=70Ay=7052.5Ay=17.5k

Calculate the value of the angle θ as follows:

tanθ=(4015)θ=tan1(4015)θ=69.44°

Consider a section a-a passing through the members BC, CG, and JK.

Show the portion of the truss to the left of the section a-a as shown in Figure 2.

Structural Analysis, 5th Edition, Chapter 4, Problem 46P , additional homework tip  2

Refer Figure 2.

Take the sum of the moment about C as zero.

MF=0(10×20)(10×40)(17.5×30)FJK×40=0FJK=112540FJK=28.13k(C)

JOINT A.

Show the joint as shown in Figure 3.

Structural Analysis, 5th Edition, Chapter 4, Problem 46P , additional homework tip  3

Refer Figure 3.

For Equilibrium of forces,

Fy=0FAFsin(69.44°)+17.5=0FAF=17.5sin(69.44°)FAF=18.69k(C)

Fx=020+FAB+FAFcos(69.44°)=020+FAB+(18.69)cos(69.44°)=0FAB=18.69cos(69.44°)+20FAB=26.56k(T)

JOINT J.

Show the joint as shown in Figure 4.

Structural Analysis, 5th Edition, Chapter 4, Problem 46P , additional homework tip  4

Refer Figure 4.

For Equilibrium of forces,

Fy=0FJFsin(69.44°)FJGsin(69.44°)=0FJF=FJG        (2)

Fx=010FJFcos(69.44°)+FJK+FJGcos(69.44°)=010FJFcos(69.44°)+(28.13)+FJGcos(69.44°)=010(FJG)cos(69.44°)+(28.13)+FJGcos(69.44°)=0

10+0.3511FJG28.13+0.3511FJG=0FJG=18.130.7022FJG=25.81k(T)

Substitute 25.81k for FJG in Equation (2).

FJF=25.81kFJF=25.81k(C)

JOINT F.

Show the joint as shown in Figure 5.

Structural Analysis, 5th Edition, Chapter 4, Problem 46P , additional homework tip  5

Refer Figure 5.

For Equilibrium of forces,

Fy=0FFAsin(69.44°)FFBsin(69.44°)+FFJsin(69.44°)=0FFAFFB+FFJ=0(18.69)FFB+(25.81)=0FFB=7.12k(C)

Fx=010+FFJcos(69.44°)+FFBcos(69.44°)+FFGFFAcos(69.44°)=010+(25.81)cos(69.44°)+(7.12)cos(69.44°)+FFGFFAcos(69.44°)=0[10+(25.81)cos(69.44°)+(7.12)cos(69.44°)+FFG(18.69)cos(69.44°)]=0FFG+5=0FFG=5k(C)

JOINT G.

Show the joint as shown in Figure 6.

Structural Analysis, 5th Edition, Chapter 4, Problem 46P , additional homework tip  6

Refer Figure 6.

For Equilibrium of forces,

Fx=0FGFFGJcos(69.44°)FGBcos(69.44°)+FGCcos(69.44°)=0(5)25.81cos(69.44°)7.12cos(69.44°)+FGCcos(69.44°)=025.817.12+FGC=5cos(69.44°)25.817.12+FGC=14.237FGC=18.69k(T)

Fy=0FGBsin(69.44°)FGCsin(69.44°)+FGJsin(69.44°)=0FGBFGC+FGJ=0FGB18.69+25.81=0FGB=7.12k(T)

JOINT E.

Show the joint as shown in Figure 7.

Structural Analysis, 5th Edition, Chapter 4, Problem 46P , additional homework tip  7

Refer Figure 7.

For Equilibrium of forces,

Fy=052.5+FEIsin(69.44°)=0FEI=52.5sin(69.44°)FEI=56.07k(C)

Fx=0FED=FEIcos(69.44°)FED=(56.07)cos(69.44°)FED=19.69k(T)

JOINT K.

Show the joint as shown in Figure 8.

Structural Analysis, 5th Edition, Chapter 4, Problem 46P , additional homework tip  8

Refer Figure 8.

For Equilibrium of forces,

Fx=0FKJFKHcos(69.44°)+FKIcos(69.44°)=0(28.13)FKHcos(69.44°)+FKIcos(69.44°)=0FKH+FKI=28.13cos(69.44°)FKH+FKI=80.09        (3)

Fy=0FKHsin(69.44°)=FKIsin(69.44°)FKH=FKIFKI+FKH=0        (4)

Add Equation (3) and (4).

2FKI=80.09FKI=40.045k(C)

Subtract Equation (4) and (3).

2FKH=80.09FKH=40.045k(T)

JOINT I.

Show the joint as shown in Figure 9.

Structural Analysis, 5th Edition, Chapter 4, Problem 46P , additional homework tip  9

Refer Figure 9.

For Equilibrium of forces,

Fy=0FIDsin(69.44°)FIEsin(69.44°)+FIKsin(69.44°)=0FIDFIE+FIK=0FID(56.07)+(40.05)=0FID=16.02k(T)

Fx=0FIHFIDcos(69.44°)FIKcos(69.44°)+FIEcos(69.44°)=0FIH16.02cos(69.44°)(40.05)cos(69.44°)+(56.07)cos(69.44°)=0FIH=[16.02(40.05)+(56.07)]cos(69.44°)FIH=11.25k(C)

JOINT H.

Show the joint as shown in Figure 10.

Structural Analysis, 5th Edition, Chapter 4, Problem 46P , additional homework tip  10

Refer Figure 10.

For Equilibrium of forces,

Fx=0FHDcos69.44°+FHKcos69.44°FHCcos69.44°+FHI=0FHDcos69.44°+40.05cos69.44°FHCcos69.44°11.25=0FHD+40.05FHC=11.25cos69.44°FHDFHC=8.015        (5)

Fy=0FHDcos69.44°+FHKcos69.44°FHCcos69.44°=0FHDcos69.44°+40.05cos69.44°FHCcos69.44°=0FHD+40.05FHC=0FHDFHC=40.05        (6)

Add Equation (5) and (6).

2FHC=48.065FHC=24.03k(T)

Subtract Equation (5) from Equation (6).

2FHD=32.035FHD=16.02k(T)

JOINT B.

Show the joint as shown in Figure 11.

Structural Analysis, 5th Edition, Chapter 4, Problem 46P , additional homework tip  11

Refer Figure 11.

For Equilibrium of forces,

Fx=0FBFcos(69.44°)FBA=FBC+FBGcos(69.44°)(7.12)cos(69.44°)26.56=FBC+(7.12)cos(69.44°)26.56=FBCFBC=26.56k(C)

JOINT D.

Show the joint as shown in Figure 12.

Structural Analysis, 5th Edition, Chapter 4, Problem 46P , additional homework tip  12

Refer Figure 12.

For Equilibrium of forces,

Fx=0FDHcos(69.44°)+FDC=FDE+FDIcos(69.44°)16.02cos(69.44°)+FDC=19.69+16.02cos(69.44°)FDC=19.69k(T)

Show the forces in the members of the truss as shown in Table 1.

MemberForce (k)
DC19.69k(T)
BC26.56k(C)
HD16.02k(T)
HC24.03k(T)
IH11.25k(C)
ID16.02k(T)
KH40.045k(T)
KI40.045k(C)
ED19.69k(T)
EI56.07k(C)
GB7.12k(T)
GC18.69k(T)
FG5k(C)
FB7.12k(C)
JF25.81k(C)
JG25.81k(T)
AB26.56k(T)
AF18.69k(C)
JK28.13k(C)

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Three transportation projects have been proposed to increase the safety in and around a residential neighborhood. Each project consists of upgrading existing street signing to highly retroreflective sheeting to increase visibility. The following table shows the initial construction costs, annual operating costs, useful life of the sheeting, and salvage values for each alternative. Annual Operations and Maintenance Initial Construction Alternative Cost ($) 1 16,000 2 3 7,500 18,000 Costs ($) 2,000 3,750 2,000 Useful Life (years) Salvage Value ($) 10 5 10 6,000 850 7,300 Assume that the discount rate is 10 percent. Calculate the present worth (in dollars) for each alternative. (Assume for Alternative 2 that new sheeting must be purchased at the end of the first five years, and that all operations and maintenance costs are due at the end of each year.) PW1 PW 2 = $25967 Your response differs from the correct answer by more than 10%. Double check your calculations. = $21185.5 x PW 3 = $…
Average demand on a rural roadway ranges from zero to 700 veh/day when the cost per trip goes from $1.50 to zero. (a) Calculate the net user benefits per year (in dollars) if the cost decreases from $1.00 to $0.50/trip (assume a linear demand function). Enter a number. (b) Compare the value calculated in (a) with the benefits as calculated in typical highway studies. (Enter the benefits in dollars as calculated in typical highway studies.) $
help me with this Question for revision purpose and as well with references The office building was built in year 2017 and has not obtained any Green Mark certification before. The office building is occupied by a single tenant/entity. The building management team had done an analysis of the building’s energy performance by extracting the data from the various systems. The current performance and findings of the systems are listed in Appendix A. The client is considering to have the building undergo retrofitting to improve the building’s energy performance. The objective is to achieve Green Mark Gold Plus under the new Green Mark 2021 framework. For part (a) below, you are to use Pathway 1: EUI for this. (a) As part of the feasibility exercise, you are to interpret the current performance of the existing building based on the data available (Refer to Appendix A). You should then organise and present to the client how does the current building relate to the Energy Efficiency Section of…
Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Structural Analysis
    Civil Engineering
    ISBN:9781337630931
    Author:KASSIMALI, Aslam.
    Publisher:Cengage,
Text book image
Structural Analysis
Civil Engineering
ISBN:9781337630931
Author:KASSIMALI, Aslam.
Publisher:Cengage,