EBK CHEMISTRY
EBK CHEMISTRY
12th Edition
ISBN: 8220102797857
Author: Chang
Publisher: YUZU
Question
Book Icon
Chapter 4, Problem 4.68QP

(a)

Interpretation Introduction

Interpretation:

Mass of solute needed to make 2.50×102mL of 0.100M of solution has to be identified.

Concept introduction:

Molarity of the solution=MolesofsoluteVolumeinliter

The mole of the solute is calculated by multiplication of concentration of solution and volume of the solution and it is,

Mole=Concentration(M)×volume(L)

The mass of compound is given by the multiplication of mole of the compound and molar mass of the compound in gram.

Mass=Mole×Molarmass

(a)

Expert Solution
Check Mark

Explanation of Solution

Given,

The concentration of solution is 0.100M

The volume of solution is 2.50×102mL

The number of mole of cesium iodide can be calculated by using

Mole=Concentration(M)×volume(L)

Number of Moles=0.100M×2.50×102×103L=0.025mol

The mass of cesium iodide can be calculated by using,

From the standard data molar mass of CsI=259.8g/mol

=0.025mol×259.8g/mol=6.495g=6.50g

The 6.50g of cesium iodide is used to 2.50×102mL of a 0.100M of solution.

(b)

Interpretation Introduction

Interpretation:

Mass of solute needed to make 2.50×102mL of 0.100M of solution has to be identified.

Concept introduction:

Molarity of the solution=MolesofsoluteVolumeinliter

The mole of the solute is calculated by multiplication of concentration of solution and volume of the solution and it is,

Mole=Concentration(M)×volume(L)

The mass of compound is given by the multiplication of mole of the compound and molar mass of the compound in gram.

Mass=Mole×Molarmass

(b)

Expert Solution
Check Mark

Explanation of Solution

Given,

The concentration of solution is 0.100M

The volume of solution is 2.50×102mL

The number of mole of H2SO4 can be calculated by using

Mole=Concentration(M)×volume(L)

Number of Moles=0.100M×2.50×102×103L=0.025mol

The mass of H2SO4 can be calculated by using,

From the standard data molar mass of H2SO4=98.086g/mol

=0.025mol×98.086g/mol=2.45g

The 2.45g of H2SO4 is used to 2.50×102mL of a 0.100M of solution.

(c)

Interpretation Introduction

Interpretation:

Mass of solute needed to make 2.50×102mL of a 0.100M of solution has to be identified.

Concept introduction:

Molarity of the solution=MolesofsoluteVolumeinliter

The mole of the solute is calculated by multiplication of concentration of solution and volume of the solution and it is,

Mole=Concentration(M)×volume(L)

The mass of compound is given by the multiplication of mole of the compound and molar mass of the compound in gram.

Mass=Mole×Molarmass

(c)

Expert Solution
Check Mark

Explanation of Solution

Given,

The concentration of solution is 0.100M

The volume of solution is 2.50×102mL

The number of mole can be calculated by using

Mole=Concentration(M)×volume(L)

Number of Moles=0.100M×2.50×102×103L=0.025mol

The mass of Na2CO3 can be calculated by using,

From the standard data molar mass of Na2CO3=105.99g/mol

=0.025mol×105.99g/mol=2.649g

The 2.649g of Na2CO3 is used to 2.50×102mL of a 0.100M of solution.

(d)

Interpretation Introduction

Interpretation:

Mass of solute needed to make 2.50×102mL of a 0.100M of solution has to be identified.

Concept introduction:

Molarity of the solution=MolesofsoluteVolumeinliter

The mole of the solute is calculated by multiplication of concentration of solution and volume of the solution and it is,

Mole=Concentration(M)×volume(L)

The mass of compound is given by the multiplication of mole of the compound and molar mass of the compound in gram.

Mass=Mole×Molarmass

(d)

Expert Solution
Check Mark

Explanation of Solution

Given,

The concentration of solution is 0.100M

The volume of solution is 2.50×102mL

The number of mole can be calculated by using

Mole=Concentration(M)×volume(L)

Number of Moles=0.100M×2.50×102×103L=0.025mol

The mass of K2Cr2O7 can be calculated by using,

From the standard data molar mass of K2Cr2O7=294.2g/mol

=0.025mol×294.2g/mol=7.355g

The 7.355g of K2Cr2O7 is used to 2.50×102mL of a 0.100M of solution.

(e)

Interpretation Introduction

Interpretation:

Mass of solute needed to make 2.50×102mL of a 0.100M of solution has to be identified.

Concept introduction:

Molarity of the solution=MolesofsoluteVolumeinliter

The mole of the solute is calculated by multiplication of concentration of solution and volume of the solution and it is,

Mole=Concentration(M)×volume(L)

The mass of compound is given by the multiplication of mole of the compound and molar mass of the compound in gram.

Mass=Mole×Molarmass

(e)

Expert Solution
Check Mark

Explanation of Solution

Given,

The concentration of solution is 0.100M

The volume of solution is 2.50×102mL

The number of mole can be calculated by using

Mole=Concentration(M)×volume(L)

Number of Moles=0.100M×2.50×102×103L=0.025mol

The mass of KMnO4 can be calculated by using,

From the standard data molar mass of KMnO4=158.04g/mol

=0.025mol×158.04g/mol=3.95g

The 3.95g of KMnO4 is used to 2.50×102mL of a 0.100M of solution.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
e. f. CH3O. יון Br NaOCH3 OCH 3 Br H₂O
Shkruani me fjale dhe me formula kimike reaksionin e bashkeveprimit te natriumit me ujin
Don't used Ai solution and hand raiting

Chapter 4 Solutions

EBK CHEMISTRY

Ch. 4.5 - Prob. 7PECh. 4.5 - Prob. 8PECh. 4.5 - Prob. 9PECh. 4.5 - Prob. 1RCCh. 4.6 - A sample of 0.3220 g of an ionic compound...Ch. 4.6 - Prob. 1RCCh. 4.7 - How many grams of KHP are needed to neutralize...Ch. 4.7 - Prob. 12PECh. 4.8 - Prob. 13PECh. 4.8 - If a solution of a reducing agent is titrated with...Ch. 4 - Define solute, solvent, and solution by describing...Ch. 4 - What is the difference between a nonelectrolyte...Ch. 4 - Describe hydration. What properties of water...Ch. 4 - What is the difference between the following...Ch. 4 - Water is an extremely weak electrolyte and...Ch. 4 - Sodium sulfate (Na2SO4) is a strong electrolyte....Ch. 4 - Prob. 4.7QPCh. 4 - Prob. 4.8QPCh. 4 - Identify each of the following substances as a...Ch. 4 - Identify each of the following substances as a...Ch. 4 - The passage of electricity through an electrolyte...Ch. 4 - Predict and explain which of the following systems...Ch. 4 - You are given a water-soluble compound X. Describe...Ch. 4 - Explain why a solution of HCl in benzene does not...Ch. 4 - What is the difference between an ionic equation...Ch. 4 - What is the advantage of writing net ionic...Ch. 4 - Two aqueous solutions of AgNO3 and NaCl are mixed....Ch. 4 - Two aqueous solutions of KOH and MgCl2 are mixed....Ch. 4 - Characterize the following compounds as soluble or...Ch. 4 - Characterize the following compounds as soluble or...Ch. 4 - Write ionic and net ionic equations for the...Ch. 4 - Write ionic and net ionic equations for the...Ch. 4 - Which of the following processes will likely...Ch. 4 - Prob. 4.24QPCh. 4 - List the general properties of acids and bases.Ch. 4 - Give Arrheniuss and Brnsteds definitions of an...Ch. 4 - Give an example of a monoprotic acid, a diprotic...Ch. 4 - What are the characteristics of an acid-base...Ch. 4 - What factors qualify a compound as a salt? Specify...Ch. 4 - Prob. 4.30QPCh. 4 - Prob. 4.31QPCh. 4 - Identify each of the following species as a...Ch. 4 - Balance the following equations and write the...Ch. 4 - Balance the following equations and write the...Ch. 4 - Prob. 4.35QPCh. 4 - True or false: All combustion reactions are redox...Ch. 4 - Prob. 4.37QPCh. 4 - Prob. 4.38QPCh. 4 - How is the activity series organized? How is it...Ch. 4 - Use the following reaction to define redox...Ch. 4 - Prob. 4.41QPCh. 4 - What is the requirement for an element to undergo...Ch. 4 - For the complete redox reactions given here, (i)...Ch. 4 - Prob. 4.44QPCh. 4 - Arrange the following species in order of...Ch. 4 - Phosphorus forms many oxoacids. Indicate the...Ch. 4 - Give the oxidation number of the underlined atoms...Ch. 4 - Give the oxidation number for the following...Ch. 4 - Give oxidation number for the underlined atoms in...Ch. 4 - Give the oxidation number of the underlined atoms...Ch. 4 - Nitric acid is a strong oxidizing agent. State...Ch. 4 - Which of the following metals can react with...Ch. 4 - On the basis of oxidation number considerations,...Ch. 4 - Predict the outcome of the reactions represented...Ch. 4 - Classify the following redox reactions. (a)...Ch. 4 - Classify the following redox reactions. (a)...Ch. 4 - Which of the following are redox processes?...Ch. 4 - Of the following, which is most likely to be the...Ch. 4 - Write the equation for calculating molarity. Why...Ch. 4 - Describe the steps involved in preparing a...Ch. 4 - Calculate the mass of KI in grams required to...Ch. 4 - Describe how you would prepare 250 mL of a 0.707 M...Ch. 4 - Prob. 4.63QPCh. 4 - Prob. 4.64QPCh. 4 - Calculate the molarity of each of the following...Ch. 4 - Calculate the molarity of each of the following...Ch. 4 - Calculate the volume in milliliters of a solution...Ch. 4 - Prob. 4.68QPCh. 4 - What volume of 0.416 M Mg(NO3)2 should be added to...Ch. 4 - Barium hydroxide, often used to titrate weak...Ch. 4 - Describe the basic steps involved in diluting a...Ch. 4 - Write the equation that enables us to calculate...Ch. 4 - Describe how to prepare 1.00 L of 0.646 M HCl...Ch. 4 - Water is added to 25.0 mL of a 0.866 M KNO3...Ch. 4 - How would you prepare 60.0 mL of 0.200 M HNO3 from...Ch. 4 - You have 505 mL of a 0.125 M HCl solution and you...Ch. 4 - A 35.2-mL, 1.66 M KMnO4 solution is mixed with...Ch. 4 - A 46.2-mL, 0.568 M calcium nitrate [Ca(NO3)2]...Ch. 4 - Describe the basic steps involved in gravimetric...Ch. 4 - Distilled water must be used in the gravimetric...Ch. 4 - If 30.0 mL of 0.150 M CaCl2 is added to 15.0 mL of...Ch. 4 - A sample of 0.6760 g of an unknown compound...Ch. 4 - How many grams of NaCl are required to precipitate...Ch. 4 - The concentration of sulfate in water can be...Ch. 4 - Describe the basic steps involved in an acid-base...Ch. 4 - How does an acid-base indicator work?Ch. 4 - Prob. 4.87QPCh. 4 - Would the volume of a 0.10 M NaOH solution needed...Ch. 4 - A quantity of 18.68 mL of a KOH solution is needed...Ch. 4 - Calculate the concentration (in molarity) of a...Ch. 4 - Calculate the volume in milliliters of a 1.420 M...Ch. 4 - What volume of a 0.500 M HCl solution is needed to...Ch. 4 - What are the similarities and differences between...Ch. 4 - Explain why potassium permanganate (KMnO4) and...Ch. 4 - Iron(II) can be oxidized by an acidic K2Cr2O7...Ch. 4 - The SO2 present in air is mainly responsible for...Ch. 4 - Prob. 4.97QPCh. 4 - The concentration of a hydrogen peroxide solution...Ch. 4 - Oxalic acid (H2C2O4) is present in many plants and...Ch. 4 - Prob. 4.100QPCh. 4 - Iodate ion, IO3, oxidizes SO32 in acidic solution....Ch. 4 - Calcium oxalate (CaC2O4), the main component of...Ch. 4 - Prob. 4.103QPCh. 4 - Prob. 4.104QPCh. 4 - Prob. 4.105QPCh. 4 - A 5.00 102 mL sample of 2.00 M HCl solution is...Ch. 4 - Shown are two aqueous solutions containing various...Ch. 4 - Shown are two aqueous solutions containing various...Ch. 4 - Calculate the volume of a 0.156 M CuSO4 solution...Ch. 4 - Prob. 4.110QPCh. 4 - A 3.664-g sample of a monoprotic acid was...Ch. 4 - Prob. 4.112QPCh. 4 - A 15.00-mL solution of potassium nitrate (KNO3)...Ch. 4 - When a 2.50-g zinc strip was placed in a AgNO3...Ch. 4 - Calculate the mass of the precipitate formed when...Ch. 4 - Calculate the concentration of the acid (or base)...Ch. 4 - (a) Describe a preparation for magnesium hydroxide...Ch. 4 - A 1.00-g sample of a metal X (that is known to...Ch. 4 - Prob. 4.119QPCh. 4 - The molecular formula of malonic acid is C3H4O4....Ch. 4 - Prob. 4.121QPCh. 4 - A 60.0-mL 0.513 M glucose (C6H12O6) solution is...Ch. 4 - An ionic compound X is only slightly soluble in...Ch. 4 - Prob. 4.124QPCh. 4 - Prob. 4.125QPCh. 4 - Prob. 4.126QPCh. 4 - The molar mass of a certain metal carbonate, MCO3,...Ch. 4 - Prob. 4.128QPCh. 4 - You are given a soluble compound of unknown...Ch. 4 - Prob. 4.130QPCh. 4 - Prob. 4.131QPCh. 4 - Prob. 4.132QPCh. 4 - Prob. 4.133QPCh. 4 - Prob. 4.134QPCh. 4 - Prob. 4.135QPCh. 4 - Prob. 4.136QPCh. 4 - Describe in each case how you would separate the...Ch. 4 - Prob. 4.138QPCh. 4 - Prob. 4.139QPCh. 4 - A 0.8870-g sample of a mixture of NaCl and KCl is...Ch. 4 - Prob. 4.141QPCh. 4 - Prob. 4.142QPCh. 4 - Prob. 4.143QPCh. 4 - A useful application of oxalic acid is the removal...Ch. 4 - Prob. 4.145QPCh. 4 - A 0.9157-g mixture of CaBr2 and NaBr is dissolved...Ch. 4 - Prob. 4.147QPCh. 4 - A 325-mL sample of solution contains 25.3 g of...Ch. 4 - Prob. 4.149QPCh. 4 - Prob. 4.150QPCh. 4 - Prob. 4.151QPCh. 4 - Prob. 4.152QPCh. 4 - Prob. 4.153QPCh. 4 - Prob. 4.154QPCh. 4 - Prob. 4.155QPCh. 4 - Prob. 4.156QPCh. 4 - Prob. 4.157QPCh. 4 - Prob. 4.158QPCh. 4 - Prob. 4.159QPCh. 4 - Prob. 4.160QPCh. 4 - The following cycle of copper experiment is...Ch. 4 - A quantity of 25.0 mL of a solution containing...Ch. 4 - Prob. 4.163QPCh. 4 - Prob. 4.165QPCh. 4 - Prob. 4.166QPCh. 4 - Prob. 4.167QPCh. 4 - Many proteins contain metal ions for structural...Ch. 4 - Prob. 4.170IMECh. 4 - Prob. 4.171IMECh. 4 - Prob. 4.172IMECh. 4 - Muriatic acid, a commercial-grade hydrochloric...Ch. 4 - Because acid-base and precipitation reactions...
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Introductory Chemistry: An Active Learning Approa...
Chemistry
ISBN:9781305079250
Author:Mark S. Cracolice, Ed Peters
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning