Concept explainers
A projectile is launched from the point (x = 0, y = 0), with velocity
(a)

The values of the projectile distance
Answer to Problem 44AP
The table for the values of
0 | 0 |
1 | 45.7 |
2 | 82.0 |
3 | 109 |
4 | 127 |
5 | 136 |
6 | 138 |
7 | 133 |
8 | 124 |
9 | 117 |
10 | 120 |
Explanation of Solution
The initial position of the projectile is
The value of the acceleration due to gravity is
Write the formula to calculate the
Here,
In a vertical projectile the acceleration in
Substitute
Thus, the
Write the formula to calculate the
Here,
For the vertical projectile the acceleration in
Substitute
Thus, the
Write the formula to calculate the magnitude of the position vector
Substitute
For
0 | 0 |
1 | 45.7 |
2 | 82.0 |
3 | 109 |
4 | 127 |
5 | 136 |
6 | 138 |
7 | 133 |
8 | 124 |
9 | 117 |
10 | 120 |
Conclusion:
Therefore, the table for the values of
0 | 0 |
1 | 45.7 |
2 | 82.0 |
3 | 109 |
4 | 127 |
5 | 136 |
6 | 138 |
7 | 133 |
8 | 124 |
9 | 117 |
10 | 120 |
(b)

The distance is maximum when the position vector is perpendicular to the velocity.
Answer to Problem 44AP
The distance is maximum when the position vector is perpendicular to the velocity.
Explanation of Solution
The initial position of the projectile is
The velocity vector tells about the change in the position vector. If the velocity vector at particular point has a component along the position vector and the velocity vector makes an angle less than
For the position vector to be maximum the distance from the origin must be momentarily at rest or constant and the only possible situation for this is that the velocity vector makes an angle
Conclusion:
Therefore, the distance is maximum when the position vector is perpendicular to the velocity vector.
(c)

The magnitude of the maximum displacement.
Answer to Problem 44AP
The magnitude of the maximum displacement is
Explanation of Solution
The initial position of the projectile is
The expression for the position vector
Square both the sides of the above equation.
Differentiate the above expression with respect to
For the maxima condition to calculate the value the value of
Further solve the above expression for
Further solving the above quadratic equation the values of
From the table in Part (a) it is evident that after
Thus, the maximum value of
Substitute
Conclusion:
Therefore, the maximum distance is
(d)

The explanation for the method used in part (c) calculation.
Answer to Problem 44AP
The maxima and minima condition is used to calculate the maximum magnitude of the position vector.
Explanation of Solution
The initial position of the projectile is
The maximum or minimum value of any function is easily calculated using the Maxima and Minima condition.
For the part (c) first calculate the critical points by equating the differential of
The value of
Substitute the maximum value of
Conclusion:
Therefore, the maxima and minima condition is used to calculate the maximum magnitude of the position vector.
Want to see more full solutions like this?
Chapter 4 Solutions
PHYSICS:F/SCI.+ENGRS-W/WEBASSIGN
- You are standing a distance x = 1.75 m away from this mirror. The object you are looking at is y = 0.29 m from the mirror. The angle of incidence is θ = 30°. What is the exact distance from you to the image?arrow_forwardFor each of the actions depicted below, a magnet and/or metal loop moves with velocity v→ (v→ is constant and has the same magnitude in all parts). Determine whether a current is induced in the metal loop. If so, indicate the direction of the current in the loop, either clockwise or counterclockwise when seen from the right of the loop. The axis of the magnet is lined up with the center of the loop. For the action depicted in (Figure 5), indicate the direction of the induced current in the loop (clockwise, counterclockwise or zero, when seen from the right of the loop). I know that the current is clockwise, I just dont understand why. Please fully explain why it's clockwise, Thank youarrow_forwardA planar double pendulum consists of two point masses \[m_1 = 1.00~\mathrm{kg}, \qquad m_2 = 1.00~\mathrm{kg}\]connected by massless, rigid rods of lengths \[L_1 = 1.00~\mathrm{m}, \qquad L_2 = 1.20~\mathrm{m}.\]The upper rod is hinged to a fixed pivot; gravity acts vertically downward with\[g = 9.81~\mathrm{m\,s^{-2}}.\]Define the generalized coordinates \(\theta_1,\theta_2\) as the angles each rod makes with thedownward vertical (positive anticlockwise, measured in radians unless stated otherwise).At \(t=0\) the system is released from rest with \[\theta_1(0)=120^{\circ}, \qquad\theta_2(0)=-10^{\circ}, \qquad\dot{\theta}_1(0)=\dot{\theta}_2(0)=0 .\]Using the exact nonlinear equations of motion (no small-angle or planar-pendulumapproximations) and assuming the rods never stretch or slip, determine the angle\(\theta_2\) at the instant\[t = 10.0~\mathrm{s}.\]Give the result in degrees, in the interval \((-180^{\circ},180^{\circ}]\).arrow_forward
- What are the expected readings of the ammeter and voltmeter for the circuit in the figure below? (R = 5.60 Ω, ΔV = 6.30 V) ammeter I =arrow_forwardsimple diagram to illustrate the setup for each law- coulombs law and biot savart lawarrow_forwardA circular coil with 100 turns and a radius of 0.05 m is placed in a magnetic field that changes at auniform rate from 0.2 T to 0.8 T in 0.1 seconds. The plane of the coil is perpendicular to the field.• Calculate the induced electric field in the coil.• Calculate the current density in the coil given its conductivity σ.arrow_forward
- An L-C circuit has an inductance of 0.410 H and a capacitance of 0.250 nF . During the current oscillations, the maximum current in the inductor is 1.80 A . What is the maximum energy Emax stored in the capacitor at any time during the current oscillations? How many times per second does the capacitor contain the amount of energy found in part A? Please show all steps.arrow_forwardA long, straight wire carries a current of 10 A along what we’ll define to the be x-axis. A square loopin the x-y plane with side length 0.1 m is placed near the wire such that its closest side is parallel tothe wire and 0.05 m away.• Calculate the magnetic flux through the loop using Ampere’s law.arrow_forwardDescribe the motion of a charged particle entering a uniform magnetic field at an angle to the fieldlines. Include a diagram showing the velocity vector, magnetic field lines, and the path of the particle.arrow_forward
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





