Concept explainers
A spring cannon is located at the edge of a table that is 1.20 m above the floor. A steel ball is launched from the cannon with speed vi at 35.0° above the horizontal. (a) Find the horizontal position of the ball as a function of vi at the instant it lands on the floor. We write this function as x(vi). Evaluate x for (b) vi = 0.100 m/s and for (c) vi = 100 m/s. (d) Assume vi is close to but not equal to zero. Show that one term in the answer to part (a) dominates so that the function x(vi) reduces to a simpler form. (c) If vi is very large, what is the approximate form of x(v)? (f) Describe the overall shape of the graph of the function x(vi).
(a)
The ball’s horizontal position as a function of
Answer to Problem 43AP
The horizontal position of the ball as a function of
Explanation of Solution
The location of the spring cannon is
Write the formula to calculate the vertical distance covered by the ball
Here,
Write the formula to vertical component of the velocity
Here,
Substitute
Substitute
Solve the equation (II).
Write the formula to calculate the horizontal distance covered by the ball
Here,
Write the expression for the horizontal component of the velocity
Substitute
Conclusion:
Substitute
Therefore, the horizontal position of the ball as a function of
(b)
The horizontal position of the ball with
Answer to Problem 43AP
The horizontal position the ball with
Explanation of Solution
From equation (IV),
Substitute
Conclusion:
Therefore, the horizontal position the ball as
(c)
The horizontal position of the ball with
Answer to Problem 43AP
The horizontal position the ball with
Explanation of Solution
From equation (IV),
Conclusion:
Substitute
Therefore, the horizontal position the ball as
(d)
The horizontal position of the ball as a function of
Answer to Problem 43AP
The horizontal position of the ball as a function of
Explanation of Solution
The located at the spring cannon is
From equation (IV),
The value of
Conclusion:
Substitute
Therefore, the horizontal position of the ball as a function of
(e)
The horizontal position of the ball as a function of
Answer to Problem 43AP
The horizontal position of the ball as a function of
Explanation of Solution
The located at the spring cannon is
From equation (4),
Conclusion:
The term is
Therefore, the horizontal position of the ball as a function of
(f)
The overall shape of the graph of position as a function of velocity.
Answer to Problem 43AP
The starting condition graph
Explanation of Solution
From the approximation in part (d), it follows that the position curve is a straight line with slope
Conclusion:
Therefore, the starting condition graph
Want to see more full solutions like this?
Chapter 4 Solutions
Webassign Printed Access Card For Serway/jewett's Physics For Scientists And Engineers, 10th, Single-term
- air is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forwardNo chatgpt pls will upvotearrow_forward13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forward
- No chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forwardCalculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forward
- How can i solve this if n1 (refractive index of gas) and n2 (refractive index of plastic) is not known. And the brewsters angle isn't knownarrow_forward2. Consider the situation described in problem 1 where light emerges horizontally from ground level. Take k = 0.0020 m' and no = 1.0001 and find at which horizontal distance, x, the ray reaches a height of y = 1.5 m.arrow_forward2-3. Consider the situation of the reflection of a pulse at the interface of two string described in the previous problem. In addition to the net disturbances being equal at the junction, the slope of the net disturbances must also be equal at the junction at all times. Given that p1 = 4.0 g/m, H2 = 9.0 g/m and Aj = 0.50 cm find 2. A, (Answer: -0.10 cm) and 3. Ay. (Answer: 0.40 cm)please I need to show all work step by step problems 2 and 3arrow_forward
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill