EBK FIRST COURSE IN PROBABILITY, A
10th Edition
ISBN: 9780134753683
Author: Ross
Publisher: VST
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 4, Problem 4.37P
Consider Problem 4.22 t with
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A world wide fast food chain decided to carry out an experiment to assess the influence of income on number of visits to their restaurants or vice versa. A sample of households was asked about the number of times they visit a fast food restaurant (X) during last month as well as their monthly income (Y). The data presented in the following table are the sums and sum of squares. (use 2 digits after decimal point)
∑ Y = 393
∑ Y2 = 21027
∑ ( Y-Ybar )2 = SSY = 1720.88
∑ X = 324
∑ X2 = 14272
∑ ( X-Xbar )2 = SSX = 1150
nx=8
ny=11
∑ [ ( X-Xbar )( Y-Ybar) ] =SSXY=1090.5
PART A
Sample mean income is Answer
Sample standard deviation of income is Answer
90% confidence interval for the population mean income (hint: assume that income distributed normally with mean μ and variance σ2) is [Answer±Answer*Answer]
90% confidence interval for the population variance of income (hint: assume that income distributed normally with mean μ and variance σ2) is…
The demand for a commodity is given by Q = 30 +3₁P+u, where Q
denotes quantity, P denotes price, and u denotes factors other than
price that determine demand. Supply for the commodity is given by
Q = % + v, where u denotes factors other than price that determine
supply. Suppose that u and v both have a mean of zero, have variances
o and o2, and are mutually uncorrelated.
Solve the two simultaneous equations to show how Q and P depend on
u and v.
E and F are independent variables with variances of 7 and 9, respectively. Given this, Var(2E - F + 2) = ?
Show complete solution.
Chapter 4 Solutions
EBK FIRST COURSE IN PROBABILITY, A
Ch. 4 - Two balls are chosen randomly from an urn...Ch. 4 - Two fair dice are rolled, Let X equal the product...Ch. 4 - Three dice are rolled. By assuming that each of...Ch. 4 - Five men and 5 women are ranked according to their...Ch. 4 - Let X represent the difference between the number...Ch. 4 - In Problem 4.5 for n=3, if the coin is assumed...Ch. 4 - Suppose that a die is rolled twice. What are the...Ch. 4 - If the die in Problem 4.7 is assumed fair,...Ch. 4 - Repeat Example 1c, when the balls are selected...Ch. 4 - Let X be the winnings of a gambler. Let...
Ch. 4 - The random variable X is said to follow the...Ch. 4 - In the game of Two-Finger Morra, 2 players show 1...Ch. 4 - A salesman has scheduled two appointments to sell...Ch. 4 - Five distinct numbers are randomly distributed to...Ch. 4 - The National Basketball Association (NBA) draft...Ch. 4 - A deck of n cards numbered 1 through n are to be...Ch. 4 - Suppose that the distribution function of X is...Ch. 4 - Four independent flips of a fair coin are made....Ch. 4 - If the distribution function of X is given...Ch. 4 - A gambling book recommends the following winning...Ch. 4 - Four buses carrying 148 students from the same...Ch. 4 - Suppose that two teams play a series of games that...Ch. 4 - You have $1000, and a certain commodity presently...Ch. 4 - A and B play the following game: A writes down...Ch. 4 - Prob. 4.25PCh. 4 - One of the numbers I through 10 is randomly...Ch. 4 - An insurance company writes a policy to the effect...Ch. 4 - A sample of 3 items is selected at random from a...Ch. 4 - There are two possible causes for a breakdown of a...Ch. 4 - A person tosses a fair coin until a tail appears...Ch. 4 - 4.31. Each night different meteorologists give us...Ch. 4 - To determine whether they have a certain disease,...Ch. 4 - A newsboy purchases papers at 10 cents and sells...Ch. 4 - Prob. 4.34PCh. 4 - A box contains 5 red and 5 blue marbles. Two...Ch. 4 - Consider the friendship network described by...Ch. 4 - Consider Problem 4.22 t with i=2. Find the...Ch. 4 - Find Var (X) and Var (Y) for X and as given in...Ch. 4 - If E[X]=1 and var(X)=5, find a. E[(2+X)2]; b....Ch. 4 - A ball is drawn from an urn containing 3 white and...Ch. 4 - On a multiple-choice exam with 3 possible answers...Ch. 4 - A man claims to have extrasensory perception. As a...Ch. 4 - A and B will take the same 10-question...Ch. 4 - A communications channel transmits the digits 0...Ch. 4 - A satellite system consists of n components and...Ch. 4 - A student is getting ready to take an important...Ch. 4 - Suppose that it takes at least 9 votes from a...Ch. 4 - In some military courts, 9 judges are appointed....Ch. 4 - It is known that diskettes produced by a certain...Ch. 4 - When coin 1 is flipped, it lands on heads with...Ch. 4 - Each member of a population of size n is,...Ch. 4 - In a tournament involving players 1,2,3,4, players...Ch. 4 - Suppose that a biased coin that lands on heads...Ch. 4 - The expected number of typographical errors on a...Ch. 4 - The monthly worldwide average number of airplane...Ch. 4 - Approximately 80000 marriages took place in the...Ch. 4 - State your assumptions. Suppose that the average...Ch. 4 - A certain typing agency employs 2 typists. The...Ch. 4 - How many people are needed so that the probability...Ch. 4 - Suppose that the number of accidents occurring on...Ch. 4 - Compare the Poisson approximation with the correct...Ch. 4 - If you buy a lottery ticket in 50 lotteries, in...Ch. 4 - The number of times that a person contracts a cold...Ch. 4 - The probability of being dealt a full house in a...Ch. 4 - Consider n, independent trials, each of which...Ch. 4 - People enter a gambling casino at a rate of 1...Ch. 4 - The suicide rate in a certain state is 1 suicide...Ch. 4 - Each of 500 soldiers in an army company...Ch. 4 - A total of 2n people, consisting of n married...Ch. 4 - Prob. 4.70PCh. 4 - In response to an attack of 10 missiles, 500...Ch. 4 - A fair coin is flipped 10 times. Find the...Ch. 4 - At time 0, a coin that comes up heads with...Ch. 4 - Consider a roulette wheel consisting of 38 numbers...Ch. 4 - Two athletic teams play a series of games; the...Ch. 4 - Suppose in Problem 4.75 that the two teams are...Ch. 4 - An interviewer is given a list of people she can...Ch. 4 - Prob. 4.78PCh. 4 - Solve the Banach match problem (Example 8e) when...Ch. 4 - In the Banach matchbox problem, find the...Ch. 4 - An urn contains 4 white and 4 black balls. We...Ch. 4 - Suppose that a batch of 100 items contains 6 that...Ch. 4 - A game popular in Nevada gambling casinos is Keno,...Ch. 4 - In Example 81 what percentage of i defective lots...Ch. 4 - A purchaser of transistors buys them in lots of...Ch. 4 - There are three highways in the county. The number...Ch. 4 - Suppose that 10 balls are put into 5 boxes, with...Ch. 4 - There are k types of coupons. Independently of the...Ch. 4 - An urn contains 10 red, S black, and 7 green...Ch. 4 - There are N distinct types of coupons, and each...Ch. 4 - If X has distribution function F, what is the...Ch. 4 - If X has distribution function F, what is the...Ch. 4 - The random variable X is said to have the...Ch. 4 - Let N be a nonnegative integer-valued random...Ch. 4 - Let X be such that P{X=1}=p=1P{X=1}. Find c1 such...Ch. 4 - Let X be a random variable having expected value ...Ch. 4 - Find Var (X) if P(X=a)=(1)=p=1P(X=b)Ch. 4 - Show how the derivation of the binomial...Ch. 4 - Let X be a binomial random variable with...Ch. 4 - Let X be the number of successes that result from...Ch. 4 - Consider n independent sequential trials, each of...Ch. 4 - There are n components lined up in a linear...Ch. 4 - Let X be a binomial random variable with...Ch. 4 - A family has n children with probability pn,n1...Ch. 4 - Suppose that n independent tosses of a coin having...Ch. 4 - Let X be a Poisson random variable with parameter...Ch. 4 - Let X be a Poisson random variable with parameter ...Ch. 4 - Prob. 4.19TECh. 4 - Show that X is a Poisson random variable with...Ch. 4 - Consider n coins, each of which independently...Ch. 4 - From a set of n randomly chosen people, let Eij...Ch. 4 - An urn contains 2 n balls, of which 2 are numbered...Ch. 4 - Consider a random collection of n individuals. In...Ch. 4 - Here is another way to obtain a set of recursive...Ch. 4 - Suppose that the number of events that occur in a...Ch. 4 - Prove i=0nii!=1n!exxndx Hint: Use integration by...Ch. 4 - If X is a geometric random variable, show...Ch. 4 - Let X be a negative binomial random variable with...Ch. 4 - For a hyper geometric random variable,...Ch. 4 - Balls numbered I through N are in an urn. Suppose...Ch. 4 - A jar contains m+n chips, numbered 1, 2,. ., n+m....Ch. 4 - Prob. 4.33TECh. 4 - Prob. 4.34TECh. 4 - Prob. 4.35TECh. 4 - An urn initially contains one red and one blue...Ch. 4 - Prob. 4.37TECh. 4 - Prob. 4.1STPECh. 4 - Prob. 4.2STPECh. 4 - A coin that when flipped comes up heads with...Ch. 4 - Prob. 4.4STPECh. 4 - Suppose that P{X=0}=1P{X=1}. If E[X]=3Var(X), find...Ch. 4 - There are 2 coins in a bin. When one of them is...Ch. 4 - Prob. 4.7STPECh. 4 - Prob. 4.8STPECh. 4 - Prob. 4.9STPECh. 4 - An urn contains n balls numbered 1 through n. If...Ch. 4 - Prob. 4.11STPECh. 4 - Prob. 4.12STPECh. 4 - Each of the members of a 7-judge panel...Ch. 4 - Prob. 4.14STPECh. 4 - The number of eggs laid on a tree leaf by an...Ch. 4 - Each of n boys and n girls, independently and...Ch. 4 - A total of 2n people, consisting of n married...Ch. 4 - Prob. 4.18STPECh. 4 - Prob. 4.19STPECh. 4 - Show that if X is a geometric random variable with...Ch. 4 - Suppose that P{X=a}=p,P{X=b}=1p a. Show that Xbab...Ch. 4 - Prob. 4.22STPECh. 4 - Balls are randomly withdrawn, one at a time...Ch. 4 - Ten balls are to be distributed among 5 urns, with...Ch. 4 - For the match problem (Example 5m in Chapter 2),...Ch. 4 - Let be the probability that a geometric random...Ch. 4 - Two teams will play a series of games, with the...Ch. 4 - An urn has n white and m black balls. Balls are...Ch. 4 - Prob. 4.29STPECh. 4 - If X is a binomial random variable with parameters...Ch. 4 - Let X be the ith smallest number in a random...Ch. 4 - Balls are randomly removed from an urn consisting...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, probability and related others by exploring similar questions and additional content below.Similar questions
- Find the equation of the regression line for the following data set. x 1 2 3 y 0 3 4arrow_forwardOlympic Pole Vault The graph in Figure 7 indicates that in recent years the winning Olympic men’s pole vault height has fallen below the value predicted by the regression line in Example 2. This might have occurred because when the pole vault was a new event there was much room for improvement in vaulters’ performances, whereas now even the best training can produce only incremental advances. Let’s see whether concentrating on more recent results gives a better predictor of future records. (a) Use the data in Table 2 (page 176) to complete the table of winning pole vault heights shown in the margin. (Note that we are using x=0 to correspond to the year 1972, where this restricted data set begins.) (b) Find the regression line for the data in part ‚(a). (c) Plot the data and the regression line on the same axes. Does the regression line seem to provide a good model for the data? (d) What does the regression line predict as the winning pole vault height for the 2012 Olympics? Compare this predicted value to the actual 2012 winning height of 5.97 m, as described on page 177. Has this new regression line provided a better prediction than the line in Example 2?arrow_forwardWhat does the y -intercept on the graph of a logistic equation correspond to for a population modeled by that equation?arrow_forward
- Derive that the variance of the forecasted error using Exponential Smoothing (ES) method is given by 20² Var(et) 2 – α Where o² is the variance of individual observation and a is the parameter in the ES method. =arrow_forwardSuppose that index model for Stocks A and B is estimated from excess returns with the following results : Ra 0.04 +0.6Rm+ea , Rb = - 0.04 + 1.3Rm + eb Risk on the market is 30% , R-squared of A is 30%R - squared of B is 40% , security A residual variance isarrow_forwardWhen a least squares line is fit to the 8 observations in the fuel consumption data, we obtain SSE = 3.264. Calculate s? and s. (Round your answers to 3 decimal places.)arrow_forward
- b. Find the least-squares curve of the form above to fit the data (5,1.54), (7,2.02), (9,2.5), (11,2.8), (13,3.2), (15,3.5), (17,3.8), and (19,4.32), where x and y represent sales and costs in thousands. Produce a graph that shows the data points and the graph of the cubic approximation. =x+ (Ox + Ox x+ ( )x + 3 (Do not round until the final answer. Then round to six decimal places as needed.)arrow_forwardCompany A claims that the variance of the life of its appliances is less than the variance of the life of company B's appliances. A random sample of the lives of 27 of company A's appliances has a variance of 2.5 A random sample of the lives of 25 of company B's appliances has a variance of 2.8 At alphaαequals=0.10, can you support company A's claim? Complete parts (a) through (e). (a) Identify the claim and state Upper H 0H0 and Upper H Subscript aHa. Let sigma Subscript 1 Superscript 2σ21 represent the variance for company B's appliances and sigma Subscript 2 Superscript 2σ22 represent the variance for company A. A. Upper H 0H0: sigma Subscript 1 Superscript 2σ21less than<sigma Subscript 2 Superscript 2σ22, Upper H Subscript aHa: sigma Subscript 1 Superscript 2σ21greater than or equals≥sigma Subscript 2 Superscript 2σ22 B. Upper H 0H0: sigma Subscript 1 Superscript 2σ21less than or equals≤sigma Subscript 2 Superscript 2σ22, Upper H Subscript…arrow_forwardX and Y are random variables that are the same normally distributed variables as in the previous problem. The Mean of X is 5 and its SD is 3. The Mean of Y is -2 and its SD is 6. You are now being told they are independent. Find the value of each requested parameter. The mean of T= - 3x + 20 is The mean of W= Y - X is The variance of D= X - 2Y isarrow_forward
- The researcher found that the model’s effect size was very large where R = .957. Furthermore, R2 = .917. How much of the variance can be explained by the linear combination of predictor variables?arrow_forwardThe durability of the hacksaw is measured in a quality control laboratory. A standard saw needs 2500 cuts. The cutting average of 28 saws selected randomly from a company was found to be 2600 and the variance as 17500. I wonder if the company's production is above the standard? (α = 0.01)arrow_forwardCheck the linearity, casualty, stability and the time variance of the following: 1. y(n) = 4 x(n-2) + 2x(n-l) + x(n/2) 2. y(n) - l/n x(n+4) 3. y(n) W 0.25 x(n-1) + 0.5 x(n+1) - 0.4 y(n-1)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Functions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage LearningTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningCollege AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning
Functions and Change: A Modeling Approach to Coll...
Algebra
ISBN:9781337111348
Author:Bruce Crauder, Benny Evans, Alan Noell
Publisher:Cengage Learning
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
College Algebra
Algebra
ISBN:9781305115545
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Time Series Analysis Theory & Uni-variate Forecasting Techniques; Author: Analytics University;https://www.youtube.com/watch?v=_X5q9FYLGxM;License: Standard YouTube License, CC-BY
Operations management 101: Time-series, forecasting introduction; Author: Brandoz Foltz;https://www.youtube.com/watch?v=EaqZP36ool8;License: Standard YouTube License, CC-BY