Concept explainers
For the circuit in Fig. 4.109, find the Thevenin equivalent between terminals a and b.
Figure 4.109
Find the Thevenin voltage and Thevenin resistance at terminals a-b of the circuit shown in Figure 4.109.
Answer to Problem 42P
The Thevenin voltage is
Explanation of Solution
Given data:
Refer to Figure 4.109 in the textbook.
The voltage source is
The current source is
Calculation:
In the given circuit, find the Thevenin resistance by turning off
The modified circuit is shown in Figure 1.
In Figure 1,
The modified circuit is shown in Figure 2.
In Figure 2, the three
For the delta connection in Figure 3, the value of the resistor
Similarly,
And,
The modified circuit is shown in Figure 4.
In Figure 4,
The modified circuit is shown in Figure 5.
In Figure 5, the Thevenin resistance is,
Refer to Figure 4.109 in the textbook.
The given circuit is modified as shown in Figure 6.
In Figure 6, the voltage source with series resistance is converted into current source with parallel resistance by source transformation method.
That is,
Similarly, the current source with parallel resistance is converted into voltage source with series resistance by source transformation method.
That is,
The source transformation is shown in Figure 7.
In Figure 7,
The modified circuit is shown in Figure 8.
In Figure 8, the current source with parallel resistance is converted into voltage source with series resistance by source transformation method.
That is,
The source transformation is shown in Figure 9.
In Figure 9, apply Kirchhoff’s voltage law to the loop
Rearrange the equation (1) as follows,
In Figure 9, apply Kirchhoff’s voltage law to the loop
Substitute
Substitute 0 for
In Figure 9, apply Kirchhoff’s voltage law to the outer loop as follows.
Substitute 0 for
Since, the voltage
The Thevenin equivalent is shown in Figure 10.
Conclusion:
Thus, the Thevenin voltage is
Want to see more full solutions like this?
Chapter 4 Solutions
EE 98: Fundamentals of Electrical Circuits - With Connect Access
Additional Engineering Textbook Solutions
Java: An Introduction to Problem Solving and Programming (8th Edition)
Electric Circuits. (11th Edition)
Database Concepts (8th Edition)
Thermodynamics: An Engineering Approach
Modern Database Management
Starting Out with C++ from Control Structures to Objects (9th Edition)
- 1. Label the x, y, z coordinates for each frame. 2. Compute the homogeneous transformation matrices H between frames 0, 1, 2, and end- effector.arrow_forwardFind Eigenvalues and Eigenvectors for the following matrices: 1] [5-6 A = 1 1 0 L3 0 1arrow_forwardUse Gauss-Jordan Elimination method to solve the following system: 4x1+5x2 + x3 = 2 x1-2x2 3x3 = 7 - 3x1 x2 2x3 = 1. -arrow_forward
- Find the Eigenvalues and the corresponding Eigenvectors. A = [³/2 9] 3.arrow_forwardFind the Q-points for the diodes in the circuit. Assume ideal diodes, and startwith the assumption that both diodes are ON for both circuits.arrow_forwardI need help with the PSpice part. How do I do the PSpice stuff.arrow_forward
- Use Gauss-Jordan Elimination method to solve the following system: 4x1 +5x2 + x3 = 2 x1-2x2 3x3 = 7 - 3x1 x2 2x3 = 1. -arrow_forwardNo need to solve question 1. Only work on question 2 where you make the PSpice model for this circuit. I need the basic step by step to find what is wanted in question 1. Explain what kind of analysis is used and what details are adjusted in it. Also explain/perform gathering the data on a plot for the simulation.arrow_forwardI need help with this problem and an explanation of the solution for the image described below. (Introduction to Signals and Systems)arrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,