WATER RESOURCES ENGINEERING (CL)
WATER RESOURCES ENGINEERING (CL)
3rd Edition
ISBN: 9781119625827
Author: Mays
Publisher: WILEY
bartleby

Concept explainers

Question
Book Icon
Chapter 4, Problem 4.2.1P
To determine

The drawing of the hydraulic gradient line and the energy grade line of the given system.

Expert Solution & Answer
Check Mark

Explanation of Solution

Given:

D=12in.

Formula used:

hLf=fLV22gDwhere,hLfisheadlossfisfrictionfactorVisvelocityLislengthofpipegisaccelerationduetogravityDisdiameterofpipe

Calculation:

The given figure is shown below:

WATER RESOURCES ENGINEERING (CL), Chapter 4, Problem 4.2.1P , additional homework tip  1

The flow between reservoir 1 and reservoir 2 is given by

P1γ+V122g+Z1=P2γ+V222g+Z2+hLf+h L m 0+0+1000=0+0+950+hLf+h L m hLf+h L m =50

The head loss is given by

hLf=fLV22gDhLf=f( 600)V22( 32.2)( 12 12 )hLf=9.32fV2

The total minor head loss is given by

h L m =hL entrance+hL globevalve+hL exith L m =keV22g+kvalveV22g+V22gh L m =(ke+k valve+1)V22g50=(0.5+1.5+1)V22( 32.2)+9.32fV250=0.0466V2+9.32fV250=V2(0.0466+9.32f)V2=500.0466+9.32fV= 50 0.0466+9.32f(1)

The relative roughness of pipe is given by

Relativeroughness=KsDKsD=0.0005 12 12=0.0005

The value of the friction factor is 0.0165 from Moody’s diagram.

Now, substituting the value of the friction factor in the equation (1)

V= 50 0.0466+9.32fV= 50 0.0466+9.32( 0.0165 )V=15.8ft/s

The discharge is given by

Q=AVQ=(π4D2)VQ=[π4×( 12 12 )2](15.8)Q=12.4ft3/s

The velocity head is given by

V22g= 15.822( 32.2)V22g=3.876

The total head loss in the flow from A to B is given by

hL=keV22g+fLV22gDhL=0.5( 15.8 2 2×32.2)+0.0165( 200) 15.822( 32.2)( 12 12 )hL=1.938+12.792hL=14.73ft

The hydraulic gradient line at B is given by

HGLB=1000hLV22gHGLB=100014.73 15.822( 32.2)HGLB=100014.733.876HGLB=981.394ft

The energy gradient line at B is given by

EGLB=HGLB+V22gEGLB=981.394+ 15.822( 32.2)EGLB=985.27ft

Keep the hydraulic gradient line at point C the same as the hydraulic gradient line at point B.

The hydraulic gradient line at point C is given by

HGLC=HGLBHGLC=981.394ft

The energy gradient line at C is given by

EGLC=HGLC+V22gEGLC=981.394+ 15.822( 32.2)EGLC=985.27ft

The hydraulic gradient line at D is given by

HGLD=EGLCfLV22gDV22gHGLD=985.270.0165( 380)( 15.8 2 )2( 32.2)(1) 15.822( 32.2)HGLD=985.2724.3053.876HGLD=957.089ft

The energy gradient line at D is given by

EGLD=HGLD+V22gEGLD=957.089+ 15.822( 32.2)EGLD=960.965ft

The hydraulic gradient line at E is given by

HGLE=EGLDkvalveV22gV22gHGLE=960.9651.5( 15.8 2 2×32.2) 15.822( 32.2)HGLE=960.9655.8143.876HGLE=951.275ft

The energy gradient line at E is given by

EGLE=HGLE+V22gEGLE=951.275+ 15.822( 32.2)EGLE=955.151ft

The hydraulic gradient line at F is given by

HGLF=EGLEfLV22gDV22gHGLF=955.1510.0165( 10)( 15.8 2 )2( 32.2)(1) 15.822( 32.2)HGLF=955.1510.63963.876HGLF=950.635ft

The energy gradient line at F is given by

EGLF=HGLF+V22gEGLF=950.635+ 15.822( 32.2)EGLF=954.511ft

WATER RESOURCES ENGINEERING (CL), Chapter 4, Problem 4.2.1P , additional homework tip  2

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
School of I- I- 30 ft C1 B1 B2 E G1 4 @ 8 ft Floor 13 Span C3 G2 4 @ 8 ft -I- 30 ft 1. Calculate the dead load, wp (kip/ft), applied to beam B2 based on tributary load analysis for the given loads and floor span direction. In addition to the weight of concrete, include an additional 25 psf dead load (total of fixed partitions, HVAC, and drop ceiling). Neglect the beam self-weight and the weight of the corrugated steel sheet metal. 2. Draw an FBD of beam B2 showing the calculated dead load, wp, and support reactions. 3. Report the maximum bending moment (kip-ft) in beam B2 due to dead load. 4. What is the minimum uniform live load, L. (psf), for this occupancy? 5. Calculate the live load, WL (kip/ft), applied to beam B2 based on tributary load analysis for the occupancy and floor span direction. 6. Draw an FBD of beam B2 showing the calculated live load, wL, and reactions 7. Report the maximum bending moment (kip-ft) in beam B2 due to live load. 8. Is live load reduction allowed for…
P10.7 WP For the simply supported steel beam [E = 200 GPa; I = 129 × 106 mm²] shown in Figure P10.7, use the double-integration method to determine the deflection at B. Assume that L = 4 m, P = 60 kN, and w = 40 kN/m. A B FIGURE P10.7 W
When calculating the minimum force P required to prevent motion of the wheel....What is the angle beta to be used in the equation for belt frictionwhen working with this system?Which tension would be T2?
Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Text book image
Principles of Geotechnical Engineering (MindTap C...
Civil Engineering
ISBN:9781305970939
Author:Braja M. Das, Khaled Sobhan
Publisher:Cengage Learning
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning
Text book image
Engineering Fundamentals: An Introduction to Engi...
Civil Engineering
ISBN:9781305084766
Author:Saeed Moaveni
Publisher:Cengage Learning
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Text book image
Solid Waste Engineering
Civil Engineering
ISBN:9781305635203
Author:Worrell, William A.
Publisher:Cengage Learning,