WATER RESOURCES ENGINEERING
WATER RESOURCES ENGINEERING
3rd Edition
ISBN: 9781119490579
Author: Mays
Publisher: WILEY
bartleby

Concept explainers

Question
Book Icon
Chapter 4, Problem 4.2.1P
To determine

The drawing of the hydraulic gradient line and the energy grade line of the given system.

Expert Solution & Answer
Check Mark

Explanation of Solution

Given:

D=12in.

Formula used:

hLf=fLV22gDwhere,hLfisheadlossfisfrictionfactorVisvelocityLislengthofpipegisaccelerationduetogravityDisdiameterofpipe

Calculation:

The given figure is shown below:

WATER RESOURCES ENGINEERING, Chapter 4, Problem 4.2.1P , additional homework tip  1

The flow between reservoir 1 and reservoir 2 is given by

P1γ+V122g+Z1=P2γ+V222g+Z2+hLf+h L m 0+0+1000=0+0+950+hLf+h L m hLf+h L m =50

The head loss is given by

hLf=fLV22gDhLf=f( 600)V22( 32.2)( 12 12 )hLf=9.32fV2

The total minor head loss is given by

h L m =hL entrance+hL globevalve+hL exith L m =keV22g+kvalveV22g+V22gh L m =(ke+k valve+1)V22g50=(0.5+1.5+1)V22( 32.2)+9.32fV250=0.0466V2+9.32fV250=V2(0.0466+9.32f)V2=500.0466+9.32fV= 50 0.0466+9.32f(1)

The relative roughness of pipe is given by

Relativeroughness=KsDKsD=0.0005 12 12=0.0005

The value of the friction factor is 0.0165 from Moody’s diagram.

Now, substituting the value of the friction factor in the equation (1)

V= 50 0.0466+9.32fV= 50 0.0466+9.32( 0.0165 )V=15.8ft/s

The discharge is given by

Q=AVQ=(π4D2)VQ=[π4×( 12 12 )2](15.8)Q=12.4ft3/s

The velocity head is given by

V22g= 15.822( 32.2)V22g=3.876

The total head loss in the flow from A to B is given by

hL=keV22g+fLV22gDhL=0.5( 15.8 2 2×32.2)+0.0165( 200) 15.822( 32.2)( 12 12 )hL=1.938+12.792hL=14.73ft

The hydraulic gradient line at B is given by

HGLB=1000hLV22gHGLB=100014.73 15.822( 32.2)HGLB=100014.733.876HGLB=981.394ft

The energy gradient line at B is given by

EGLB=HGLB+V22gEGLB=981.394+ 15.822( 32.2)EGLB=985.27ft

Keep the hydraulic gradient line at point C the same as the hydraulic gradient line at point B.

The hydraulic gradient line at point C is given by

HGLC=HGLBHGLC=981.394ft

The energy gradient line at C is given by

EGLC=HGLC+V22gEGLC=981.394+ 15.822( 32.2)EGLC=985.27ft

The hydraulic gradient line at D is given by

HGLD=EGLCfLV22gDV22gHGLD=985.270.0165( 380)( 15.8 2 )2( 32.2)(1) 15.822( 32.2)HGLD=985.2724.3053.876HGLD=957.089ft

The energy gradient line at D is given by

EGLD=HGLD+V22gEGLD=957.089+ 15.822( 32.2)EGLD=960.965ft

The hydraulic gradient line at E is given by

HGLE=EGLDkvalveV22gV22gHGLE=960.9651.5( 15.8 2 2×32.2) 15.822( 32.2)HGLE=960.9655.8143.876HGLE=951.275ft

The energy gradient line at E is given by

EGLE=HGLE+V22gEGLE=951.275+ 15.822( 32.2)EGLE=955.151ft

The hydraulic gradient line at F is given by

HGLF=EGLEfLV22gDV22gHGLF=955.1510.0165( 10)( 15.8 2 )2( 32.2)(1) 15.822( 32.2)HGLF=955.1510.63963.876HGLF=950.635ft

The energy gradient line at F is given by

EGLF=HGLF+V22gEGLF=950.635+ 15.822( 32.2)EGLF=954.511ft

WATER RESOURCES ENGINEERING, Chapter 4, Problem 4.2.1P , additional homework tip  2

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
(20 02 A concrete beam of rectangular cross-section (300 x 400) mm is Prestressed with wires located at (30) mm from the top of the beam .The wires are initially tensioned to 0-6 mm) diameter wires at (100) mm from the soffit of the beam and (5-6 mm) a stress of (900 N/mm²). Compute the percentage loss of stress in steel after transfer due to elastic deformation of concrete. Given: Es=200 x 103 N/mm², Ec = 25 x 10³ N/mm². 300 за 60000 400 100 546 2046
Reinforced Concrete Design First Monthly Exam 24/02/2 Q1. A simply supported rectangular beam (300 x 400) mm and span (12) m with live load of from the soffit of the beam. Compute the stresses at mid-span of beam for the following (5 kN/m). At the centre of the beam the prestressing force of (120) kN is located at (50 mm) conditions: (a) Prestress + self- weight of beam (initial stage). (b) Prestress + self- weight of beam + Live Load (service stage). 3:00 400 120 K * 12m 5kN/m. 120 KN
A driven pipe pile in clay is shown in Figure (1). The pipe has outside diameter of 406 mm, and wall thickness is 6.35 mm. a. calculate the net point bearing capacity. b. calculate the skin resistance (1) by using a method, (2) by using A method. e. Estimate the net allowable pile capacity. Use FS-4. Figure (1) 5 m Saturated clay 30 kN/m² Groundwater table y= 18 kN/m 5 m Clay C-30 kN/m2 y= 18 kN/m 20 m C Clay -100 kN/m² 19.6 kN/m
Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Text book image
Principles of Geotechnical Engineering (MindTap C...
Civil Engineering
ISBN:9781305970939
Author:Braja M. Das, Khaled Sobhan
Publisher:Cengage Learning
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning
Text book image
Engineering Fundamentals: An Introduction to Engi...
Civil Engineering
ISBN:9781305084766
Author:Saeed Moaveni
Publisher:Cengage Learning
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Text book image
Solid Waste Engineering
Civil Engineering
ISBN:9781305635203
Author:Worrell, William A.
Publisher:Cengage Learning,