![Loose Leaf for Fundamentals of Aerodynamics](https://www.bartleby.com/isbn_cover_images/9781259683992/9781259683992_largeCoverImage.gif)
Consider the data for the NACA 2412 airfoil given in Figure 4.10. Calculate the lift and moment about the quarter chord (per unit span) for this airfoil when the angle of attack is 4° and the frecstream is at standard sea level conditions with a velocity of 50 ft/s. The chord of the airfoil is 2 ft.
![Check Mark](/static/check-mark.png)
The lift per unit span and the moment about the quarter chord for NASA 2412 airfoil.
Answer to Problem 4.1P
The lift per unit span is 3.18 lb per unit span & the moment per unit span is -0.4277 lb.ft.per unit span.
Explanation of Solution
Given Information:
The velocity of free stream = 50 ft/s
The angle of attack =
The chord of airfoil = 2 ft
Calculation:
Assume the value of density of free stream as
The velocity of air stream,
The dynamic pressure acting on the foil:
The value of the lift coefficient and momentum coefficient is calculated from the standard values of NACA airfoil. (Reference 11 from textbook named as Fundamental of Aerodynamics, 6th edition)
Lift coefficient ( | Drag Coefficient ( | Momentum coefficient ( | |
-2 | 0.05 | 0.006 | -0.042 |
0 | 0.25 | 0.006 | -0.040 |
2 | 0.44 | 0.006 | -0.038 |
4 | 0.64 | 0.007 | -0.036 |
6 | 0.85 | .0075 | -0.034 |
8 | 1.08 | 0.0092 | -0.034 |
10 | 1.26 | .00115 | -0.0.34 |
At
Lift coefficient,
Momentum coefficient,
The lift per unit span is given by :
Here S =surface area of the foil = 2 ft2
For moment about the quarter chord per unit span is given by:
Want to see more full solutions like this?
Chapter 4 Solutions
Loose Leaf for Fundamentals of Aerodynamics
Additional Engineering Textbook Solutions
Vector Mechanics for Engineers: Statics and Dynamics
Mechanics of Materials (10th Edition)
Fluid Mechanics: Fundamentals and Applications
Problem Solving with C++ (10th Edition)
BASIC BIOMECHANICS
Starting Out with Programming Logic and Design (5th Edition) (What's New in Computer Science)
- (read me)arrow_forward(read image)arrow_forwardQu. 13 What are the indices for the Direction 2 indicated by vector in the following sketch? Qu. 14 Determine the indices for the direction A and B shown in the following cubic unit cell. please show all work step by step from material engineeringarrow_forward
- The thin-walled open cross section shown is transmitting torque 7. The angle of twist ₁ per unit length of each leg can be determined separately using the equation 01 = 3Ti GLIC 3 where G is the shear modulus, ₁ is the angle of twist per unit length, T is torque, and L is the length of the median line. In this case, i = 1, 2, 3, and T; represents the torque in leg i. Assuming that the angle of twist per unit length for each leg is the same, show that T= Lic³ and Tmaz = G01 Cmax Consider a steel section with Tallow = 12.40 kpsi. C1 2 mm L1 20 mm C2 3 mm L2 30 mm C3 2 mm L3 25 mm Determine the torque transmitted by each leg and the torque transmitted by the entire section. The torque transmitted by the first leg is | N-m. The torque transmitted by the second leg is N-m. The torque transmitted by the third leg is N-m. The torque transmitted by the entire section is N-m.arrow_forwardPlease help, make sure it's to box out and make it clear what answers go where...arrow_forwardThe cylinder floats in the water and oil to the level shown. Determine the weight of the cylinder. (rho)o=910 kg/m^3arrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305387102/9781305387102_smallCoverImage.gif)