Concept explainers
A position
- Draw the position vector to scale on cartesian axes.
- Write an expression for the position vector using unit vector notation.
- Write an expression for the position vector using complex number notation, in both polar and cartesian forms.
a.
![Check Mark](/static/check-mark.png)
To draw: The position vector to scale on Cartesian axes.
Answer to Problem 4.1P
The position vector to scale on Cartesian axesisshown in Figure-1.
Explanation of Solution
Given information:The tangent is defined as the weight in pound divided by age and the length is equal to the height.
Calculation:
The magnitude of the vector is,
Here,
Substitute
The graph is shown below.
Figure-1
b.
![Check Mark](/static/check-mark.png)
To write: The expression for the position vector.
Answer to Problem 4.1P
The expression for the position vector is
Explanation of Solution
Given information:The tangent is defined as the weight in pound divided by age and the length is equal to the height.
Calculation:
The expression for the position vector is,
Substitute
c.
![Check Mark](/static/check-mark.png)
To write: The expression for the position vector in polar and Cartesian coordinates.
Answer to Problem 4.1P
The expression for the position vector in polar and Cartesian coordinates is
Explanation of Solution
Given information:The tangent is defined as the weight in pound divided by age and the length is equal to the height.
Calculation:
The expression for the position vector is,
Substitute
The expression for the position vector is,
Substitute
Want to see more full solutions like this?
Chapter 4 Solutions
DESIGN OF MACHINERY (LL+CONNECT)
- The coefficient of friction between the part and the tool in cold working tends to be: lower higher no different relative to its value in hot workingarrow_forwardThe force F={25i−45j+15k}F={25i−45j+15k} lblb acts at the end A of the pipe assembly shown in (Figure 1). Determine the magnitude of the component F1 which acts along the member AB. Determine the magnitude of the component F2 which acts perpendicular to the AB.arrow_forwardHi can you please help me with the attached question?arrow_forward
- Please can you help me with the attached question?arrow_forwardPlease can you help me with the attached question?arrow_forward4. The rod ABCD is made of an aluminum for which E = 70 GPa. For the loading shown, determine the deflection of (a) point B, (b) point D. 1.75 m Area = 800 mm² 100 kN B 1.25 m с Area = 500 mm² 75 kN 1.5 m D 50 kNarrow_forward
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE LPrecision Machining Technology (MindTap Course Li...Mechanical EngineeringISBN:9781285444543Author:Peter J. Hoffman, Eric S. Hopewell, Brian JanesPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305501607/9781305501607_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285444543/9781285444543_smallCoverImage.gif)