Laboratory preparation for hydrogen gas has to be given. Concept Introduction: A balanced equation should be obeying the law of conservation of mass. Law of conservation of mass states that, the number of atoms remains constant throughout the reaction, simply it can be stated as follows, “during a chemical reaction atoms are neither be created nor be destroyed”.
Laboratory preparation for hydrogen gas has to be given. Concept Introduction: A balanced equation should be obeying the law of conservation of mass. Law of conservation of mass states that, the number of atoms remains constant throughout the reaction, simply it can be stated as follows, “during a chemical reaction atoms are neither be created nor be destroyed”.
Solution Summary: The author explains that a balanced equation should be obeying the law of conservation of mass. The number of atoms remains constant throughout the reaction.
Definition Definition Transformation of a chemical species into another chemical species. A chemical reaction consists of breaking existing bonds and forming new ones by changing the position of electrons. These reactions are best explained using a chemical equation.
Chapter 4, Problem 4.156QP
(a)
Interpretation Introduction
Interpretation: Laboratory preparation for hydrogen gas has to be given.
Concept Introduction:
A balanced equation should be obeying the law of conservation of mass. Law of conservation of mass states that, the number of atoms remains constant throughout the reaction, simply it can be stated as follows, “during a chemical reaction atoms are neither be created nor be destroyed”.
(b)
Interpretation Introduction
Interpretation: Laboratory preparation for oxygen gas has to be given.
Concept Introduction:
A balanced equation should be obeying the law of conservation of mass. Law of conservation of mass states that, the number of atoms remains constant throughout the reaction, simply it can be stated as follows, “during a chemical reaction atoms are neither be created nor be destroyed”.
(c)
Interpretation Introduction
Interpretation: Laboratory preparation for carbon dioxide gas has to be given.
Concept Introduction:
A balanced equation should be obeying the law of conservation of mass. Law of conservation of mass states that, the number of atoms remains constant throughout the reaction, simply it can be stated as follows, “during a chemical reaction atoms are neither be created nor be destroyed”.
(d)
Interpretation Introduction
Interpretation: Laboratory preparation for nitrogen gas has to be given.
Concept Introduction:
A balanced equation should be obeying the law of conservation of mass. Law of conservation of mass states that, the number of atoms remains constant throughout the reaction, simply it can be stated as follows, “during a chemical reaction atoms are neither be created nor be destroyed”.
+
C8H16O2 (Fatty acid) +
11 02 → 8 CO2
a. Which of the above are the reactants?
b. Which of the above are the products?
H2o CO₂
c. Which reactant is the electron donor? Futty acid
d. Which reactant is the electron acceptor?
e. Which of the product is now reduced?
f. Which of the products is now oxidized?
02
#20
102
8 H₂O
g. Where was the carbon initially in this chemical reaction and where is it now that it is
finished?
2
h. Where were the electrons initially in this chemical reaction and where is it now that it is
finished?
→
Acetyl-CoA + 3NAD+ + 1FAD + 1ADP 2CO2 + CoA + 3NADH + 1FADH2 + 1ATP
a. Which of the above are the reactants?
b. Which of the above are the products?
c. Which reactant is the electron donor?
d. Which reactants are the electron acceptors?
e. Which of the products are now reduced?
f. Which product is now oxidized?
g. Which process was used to produce the ATP?
h. Where was the energy initially in this chemical reaction and where is it now that it is
finished?
i. Where was the carbon initially in this chemical reaction and where is it now that it is
finished?
j. Where were the electrons initially in this chemical reaction and where is it now that it is
finished?
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell