Concept explainers
(a)
Interpretation:
The balanced net ionic equation for the precipitation reaction is to be determined.
Concept introduction:
There are three types of equations that are utilized to represent an ionic reaction:
1. Molecular equation
2. Total ionic equation
3. Net ionic equation
The molecular equation represents the reactants and products of the ionic reaction in undissociated form. In total ionic reaction, all the dissociated ions that are present in the reaction mixture are represented and in net ionic reaction, the useful ions that participate in the reaction are represented.
Precipitation reaction involves the reaction of two soluble ionic compounds to form an insoluble product. The insoluble product is known as a precipitate.
The reason for the precipitation reaction to occur is the formation of a product that is insoluble in nature.
Spectator ions are the ions that are not a part of the actual chemical change but are present in the reaction mixture to balance the charge on both sides of the reaction. They are represented in the total ionic reaction. These are the dissolved ions present in the reaction mixture.
(a)

Answer to Problem 4.131P
The molecular equation of the following reaction is:
The total ionic equation for the given reaction is:
The net ionic equation for the given reaction is:
Explanation of Solution
Sodium oxalate
The total ionic equation for the given reaction is:
The net ionic equation for the given reaction is:
(b)
Interpretation:
The balanced net ionic equation for the titration reaction is to be determined.
Concept introduction:
There are three types of equations that are utilized to represent an ionic reaction:
1. Molecular equation
2. Total ionic equation
3. Net ionic equation
The molecular equation represents the reactants and products of the ionic reaction in undissociated form. In total ionic reaction, all the dissociated ions that are present in the reaction mixture are represented and in net ionic reaction, the useful ions that participate in the reaction are represented.
Precipitation reaction involves the reaction of two soluble ionic compounds to form an insoluble product. The insoluble product is known as a precipitate.
The reason for the precipitation reaction to occur is the formation of a product that is insoluble in nature.
Spectator ions are the ions that are not a part of the actual chemical change but are present in the reaction mixture to balance the charge on both sides of the reaction. They are represented in the total ionic reaction. These are the dissolved ions present in the reaction mixture.
(b)

Answer to Problem 4.131P
The net ionic equation of the following reaction is:
Explanation of Solution
Potassium permanganate
The reaction takes place in an acidic medium so
Potassium permanganate
(c)
Interpretation:
The oxidizing agent in the reaction is to be identified.
Concept introduction:
A
An oxidizing agent is a substance that oxidizes another species and itself gets reduced in a
(c)

Answer to Problem 4.131P
The oxidizing agent in the reaction is
Explanation of Solution
The given redox reaction is:
The oxidation number of oxygen is
The expression to calculate the oxidation number of manganese in
Rearrange equation (1) for the oxidation number of manganese.
Substitute
The oxidation state of
The oxidation state of manganese in
An oxidizing agent is a substance that oxidizes another species and itself gets reduced in a chemical reaction.
(d)
Interpretation:
The reducing agent in the reaction is to be identified.
Concept introduction:
A redox reaction is a type of reaction that involves the change in oxidation number of a molecule, atom or ion changes due to the transfer of an electron from one species to another.
An oxidizing agent is a substance that oxidizes another species and itself gets reduced in a chemical reaction. A reducing agent is the one that reduces another species and itself gets oxidized in a chemical reaction.
(d)

Answer to Problem 4.131P
The reducing agent in the reaction is
Explanation of Solution
The given redox reaction is:
The expression to calculate the oxidation number of carbon in
Rearrange equation (3) for the oxidation number of carbon.
Substitute
The expression to calculate the oxidation number of carbon in
Rearrange equation (5) for the oxidation number of carbon.
Substitute
The oxidation state of carbon in
A reducing agent is the one that reduces another species and itself gets oxidized in a chemical reaction.
(e)
Interpretation:
The mass percent of
Concept introduction:
Precipitation reaction involves the reaction of two soluble ionic compounds to form an insoluble product. The insoluble product is known as a precipitate.
The reason for the precipitation reaction to occur is the formation of a product that is insoluble in nature.
(e)

Answer to Problem 4.131P
The mass percent of
Explanation of Solution
The given redox reaction is:
The formula to calculate the moles of
Substitute
The formula to calculate the moles of
Substitute
The formula to calculate the mass of
Substitute
The expression to calculate the mass percent of
Substitute
The mass percent of
Want to see more full solutions like this?
Chapter 4 Solutions
CHEMISTRY(LOOSELEAF) W/CONNECT+EBOOK
- Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. H H CH3OH, H+ H Select to Add Arrows H° 0:0 'H + Q HH ■ Select to Add Arrows CH3OH, H* H. H CH3OH, H+ HH ■ Select to Add Arrows i Please select a drawing or reagent from the question areaarrow_forwardWhat are examples of analytical methods that can be used to analyse salt in tomato sauce?arrow_forwardA common alkene starting material is shown below. Predict the major product for each reaction. Use a dash or wedge bond to indicate the relative stereochemistry of substituents on asymmetric centers, where applicable. Ignore any inorganic byproducts H Šali OH H OH Select to Edit Select to Draw 1. BH3-THF 1. Hg(OAc)2, H2O =U= 2. H2O2, NaOH 2. NaBH4, NaOH + Please select a drawing or reagent from the question areaarrow_forward
- What is the MOHR titration & AOAC method? What is it and how does it work? How can it be used to quantify salt in a sample?arrow_forwardPredict the major products of this reaction. Cl₂ hv ? Draw only the major product or products in the drawing area below. If there's more than one major product, you can draw them in any arrangement you like. Be sure you use wedge and dash bonds if necessary, for example to distinguish between major products with different stereochemistry. If there will be no products because there will be no significant reaction, just check the box under the drawing area and leave it blank. Note for advanced students: you can ignore any products of repeated addition. Explanation Check Click and drag to start drawing a structure. 80 10 m 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibility DII A F1 F2 F3 F4 F5 F6 F7 F8 EO F11arrow_forwardGiven a system with an anodic overpotential, the variation of η as a function of current density- at low fields is linear.- at higher fields, it follows Tafel's law.Calculate the range of current densities for which the overpotential has the same value when calculated for both cases (the maximum relative difference will be 5%, compared to the behavior for higher fields).arrow_forward
- Using reaction free energy to predict equilibrium composition Consider the following equilibrium: N2 (g) + 3H2 (g) = 2NH3 (g) AGº = -34. KJ Now suppose a reaction vessel is filled with 8.06 atm of nitrogen (N2) and 2.58 atm of ammonia (NH3) at 106. °C. Answer the following questions about this system: rise Under these conditions, will the pressure of N2 tend to rise or fall? ☐ x10 fall Is it possible to reverse this tendency by adding H₂? In other words, if you said the pressure of N2 will tend to rise, can that be changed to a tendency to fall by adding H2? Similarly, if you said the pressure of N will tend to fall, can that be changed to a tendency to rise by adding H₂? If you said the tendency can be reversed in the second question, calculate the minimum pressure of H₂ needed to reverse it. Round your answer to 2 significant digits. yes no ☐ atm Х ด ? olo 18 Ararrow_forwardFour liters of an aqueous solution containing 6.98 mg of acetic acid were prepared. At 25°C, the measured conductivity was 5.89x10-3 mS cm-1. Calculate the degree of dissociation of the acid and its ionization constant.Molecular weights: O (15.999), C (12.011), H (1.008).Limiting molar ionic conductivities (λ+0 and λ-0) of Ac-(aq) and H+(aq): 40.9 and 349.8 S cm-2 mol-1.arrow_forwardDetermine the change in Gibbs energy, entropy, and enthalpy at 25°C for the battery from which the data in the table were obtained.T (°C) 15 20 25 30 35Eo (mV) 227.13 224.38 221.87 219.37 216.59Data: n = 1, F = 96485 C mol–1arrow_forward
- Indicate the correct options.1. The units of the transport number are Siemens per mole.2. The Siemens and the ohm are not equivalent.3. The Van't Hoff factor is dimensionless.4. Molar conductivity does not depend on the electrolyte concentration.arrow_forwardIdeally nonpolarizable electrodes can1. participate as reducers in reactions.2. be formed only with hydrogen.3. participate as oxidizers in reactions.4. form open and closed electrochemical systems.arrow_forwardIndicate the options for an electrified interface:1. Temperature has no influence on it.2. Not all theories that describe it include a well-defined electrical double layer.3. Under favorable conditions, its differential capacitance can be determined with the help of experimental measurements.4. A component with high electronic conductivity is involved in its formation.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





