Fundamentals Of Engineering Thermodynamics, 9th Edition Epub Reg Card Loose-leaf Print Companion Set
9th Edition
ISBN: 9781119456285
Author: Michael J. Moran
Publisher: Wiley (WileyPLUS Products)
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 4.12E
To determine
In what subsystems are pumps found in automobiles.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 30-kW motor drives a fan and delivers air through a duct 1.0 m x 1.0 m at 11.684 cm WG static pressure and 2.159 cm WG velocity pressure. The density of air is 1.20 kg/m³ and the density of water is 1000 kg/m³. Determine:
2. The capacity of fan, m3/s
3. Fan efficiency, %
T-7
Current Attempt in Progress
A pump is used to circulate hot water in a home heating system. Water enters the well-insulated pump operating at steady state at a
rate of 0.42 gal/min. The inlet pressure and temperature are 14.7 Ibf/in.?, and 180°F, respectively; at the exit the pressure is 90 Ibf/in.2
The pump requires 1/25 hp of power input. Water can be modeled as an incompressible substance with constant density of 60.58
Ib/ft and constant specific heat of 1 Btu/lb · °R.
Neglecting kinetic and potential energy effects, determine the temperature change, in °R, as the water flows through the pump.
AT =
i
°R
Chapter 4 Solutions
Fundamentals Of Engineering Thermodynamics, 9th Edition Epub Reg Card Loose-leaf Print Companion Set
Ch. 4 - Prob. 4.1ECh. 4 - Prob. 4.2ECh. 4 - Prob. 4.3ECh. 4 - Prob. 4.4ECh. 4 - Prob. 4.5ECh. 4 - Prob. 4.6ECh. 4 - Prob. 4.7ECh. 4 - Prob. 4.8ECh. 4 - Prob. 4.9ECh. 4 - Prob. 4.10E
Ch. 4 - Prob. 4.11ECh. 4 - Prob. 4.12ECh. 4 - Prob. 4.13ECh. 4 - Prob. 4.14ECh. 4 - Prob. 4.15ECh. 4 - Prob. 4.1CUCh. 4 - Prob. 4.2CUCh. 4 - Prob. 4.3CUCh. 4 - Prob. 4.4CUCh. 4 - Prob. 4.5CUCh. 4 - Prob. 4.6CUCh. 4 - Prob. 4.7CUCh. 4 - Prob. 4.8CUCh. 4 - Prob. 4.9CUCh. 4 - Prob. 4.10CUCh. 4 - Prob. 4.11CUCh. 4 - Prob. 4.12CUCh. 4 - Prob. 4.13CUCh. 4 - Prob. 4.14CUCh. 4 - Prob. 4.15CUCh. 4 - Prob. 4.16CUCh. 4 - Prob. 4.17CUCh. 4 - Prob. 4.18CUCh. 4 - Prob. 4.19CUCh. 4 - Prob. 4.20CUCh. 4 - Prob. 4.21CUCh. 4 - Prob. 4.22CUCh. 4 - Prob. 4.23CUCh. 4 - Prob. 4.24CUCh. 4 - Prob. 4.25CUCh. 4 - Prob. 4.26CUCh. 4 - Prob. 4.27CUCh. 4 - Prob. 4.28CUCh. 4 - Prob. 4.29CUCh. 4 - Prob. 4.30CUCh. 4 - Prob. 4.31CUCh. 4 - Prob. 4.32CUCh. 4 - Prob. 4.33CUCh. 4 - Prob. 4.34CUCh. 4 - Prob. 4.35CUCh. 4 - Prob. 4.36CUCh. 4 - Prob. 4.37CUCh. 4 - Prob. 4.38CUCh. 4 - Prob. 4.39CUCh. 4 - Prob. 4.40CUCh. 4 - Prob. 4.41CUCh. 4 - Prob. 4.42CUCh. 4 - Prob. 4.43CUCh. 4 - Prob. 4.44CUCh. 4 - Prob. 4.45CUCh. 4 - Prob. 4.46CUCh. 4 - Prob. 4.47CUCh. 4 - Prob. 4.48CUCh. 4 - Prob. 4.49CUCh. 4 - Prob. 4.50CUCh. 4 - Prob. 4.51CUCh. 4 - Prob. 4.1PCh. 4 - Prob. 4.2PCh. 4 - Prob. 4.3PCh. 4 - Prob. 4.4PCh. 4 - Prob. 4.5PCh. 4 - Prob. 4.6PCh. 4 - Prob. 4.7PCh. 4 - Prob. 4.8PCh. 4 - Prob. 4.9PCh. 4 - Prob. 4.10PCh. 4 - Prob. 4.11PCh. 4 - Prob. 4.12PCh. 4 - Prob. 4.13PCh. 4 - Prob. 4.14PCh. 4 - Prob. 4.15PCh. 4 - Prob. 4.16PCh. 4 - Prob. 4.17PCh. 4 - Prob. 4.18PCh. 4 - Prob. 4.19PCh. 4 - Prob. 4.20PCh. 4 - Prob. 4.21PCh. 4 - Prob. 4.22PCh. 4 - Prob. 4.23PCh. 4 - Prob. 4.24PCh. 4 - Prob. 4.25PCh. 4 - Prob. 4.26PCh. 4 - Prob. 4.27PCh. 4 - Prob. 4.28PCh. 4 - Prob. 4.29PCh. 4 - Prob. 4.30PCh. 4 - Prob. 4.31PCh. 4 - Prob. 4.32PCh. 4 - Prob. 4.33PCh. 4 - Prob. 4.34PCh. 4 - Prob. 4.35PCh. 4 - Prob. 4.36PCh. 4 - Prob. 4.37PCh. 4 - Prob. 4.38PCh. 4 - Prob. 4.39PCh. 4 - Prob. 4.40PCh. 4 - Prob. 4.41PCh. 4 - Prob. 4.42PCh. 4 - Prob. 4.43PCh. 4 - Prob. 4.44PCh. 4 - Prob. 4.45PCh. 4 - Prob. 4.46PCh. 4 - Prob. 4.47PCh. 4 - Prob. 4.48PCh. 4 - Prob. 4.49PCh. 4 - Prob. 4.50PCh. 4 - Prob. 4.51PCh. 4 - Prob. 4.52PCh. 4 - Prob. 4.53PCh. 4 - Prob. 4.54PCh. 4 - Prob. 4.55PCh. 4 - Prob. 4.56PCh. 4 - Prob. 4.57PCh. 4 - Prob. 4.58PCh. 4 - Prob. 4.59PCh. 4 - Prob. 4.60PCh. 4 - Prob. 4.61PCh. 4 - Prob. 4.62PCh. 4 - Prob. 4.63PCh. 4 - Prob. 4.64PCh. 4 - Prob. 4.65PCh. 4 - Prob. 4.66PCh. 4 - Prob. 4.67PCh. 4 - Prob. 4.68PCh. 4 - Prob. 4.69PCh. 4 - Prob. 4.70PCh. 4 - Prob. 4.71PCh. 4 - Prob. 4.72PCh. 4 - Prob. 4.73PCh. 4 - Prob. 4.74PCh. 4 - Prob. 4.75PCh. 4 - Prob. 4.76PCh. 4 - Prob. 4.77PCh. 4 - Prob. 4.78PCh. 4 - Prob. 4.79PCh. 4 - Prob. 4.80PCh. 4 - Prob. 4.81PCh. 4 - Prob. 4.82PCh. 4 - Prob. 4.83PCh. 4 - Prob. 4.84PCh. 4 - Prob. 4.85PCh. 4 - Prob. 4.86PCh. 4 - Prob. 4.87PCh. 4 - Prob. 4.88P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Develop the general energy balance applied to closed systemsarrow_forwardA steady state flow compressor draws in 14170 li/min of air whose density is 1.267 kg/m3 and discharge it with density of 4.88 kg/m3. At the suction, P1-103.42 kPa, at the discharge, p2=551.584 kPa. Thge increase in specific internal energy is 78.45 kJ/kg and the heat from air by cooling is 30.173 kJ/kg. Neglecting the change of potential and kinetic energy, determine the work done on the system in kJ/min.arrow_forwardThe operating point in a pumping system is identified by a. Point of intersection of system curve and efficiency curve b. Point of intersection of pump curve and system curve c. Point of intersection of pump curve and theoretical power curve d. Cannot be determined by the pump characteristic curvesarrow_forward
- In a steady flow apparatus, a fluid enters with a specific volume of 0.30 m3/kg, a pressure of 540 kPaand a velocity of 25 m/s. The inlet port is 40m above the floor and the outlet port is at the floor level.The fluid exits with a specific volume of 0.82kg/m3, a pressure of 100 kPa and a velocity of 280 m/s.The apparatus produces 140kJ of work per kg of fluid and a 12 kJ/kg of heat loss occurs between theinlet and outlet ports. Determine the amount of change in internal energy in the apparatus in kJ/kg.Is the internal energy increases or decreases?arrow_forwardSteam flows through an adiabatic turbine at the rate of 100 lb/min with AK = 0 and Q= 0. At entry, its pressure is 175 psia, its volume is 3.16 ft1b and its internal energy is 1166.7 BTU/b. At exit, its pressure is 0.813 psia, its volume is 328 ftlb and its internal energy is 854.6 BTU/lb. (a) What horsepower is developed? (b) The same as (a) except that the turbine is not adiabatic and the heat loss from it is 10 BTU/lb of steam.arrow_forwardwhy radial gas turbines and compressors are not suitable for large applications.arrow_forward
- A pump-turbine is a piece of equipment that can operate either as a pump or as a turbine, depending on the direction of the water flow. The picture on the right shows a pump-turbine system.When it is daytime, this system is used as a turbine, taking water from the upper reservoir and discharging it into the lower reservoir, producing electricity. When it is nighttime, electricity is cheaper, and this system is used as a pump, taking water from the lower reservoir and discharging it into the higher reservoir, so that it can produce electricity again the next day when it is used as a turbine. Consider that, using the system as a turbine or pump, the water flow is 1m3/s and the pressure drop is 5 m, determine:(a) The power extracted from the fluid by the turbine (points 1 and 2 are as shown in the figure: z1=35 m and z2=0 m).(b) The useful power delivered to the fluid by the pump (points 1 and 2 in the figure should be reversed: z1=0 m and z2=35 m).arrow_forwardA steady state, steady flow compressor draws in 240 liters per second of air whose density is 1.26 kgm/m3 and discharges it with a density of 4.9 kgm/m3 . At suction P1= 104 kPaa; at discharge, P2 = 551 kPaa. The increase of specific internal energy is 78.5 kJ/kgm and the heat from the air by cooling is 30 kJ/kgm. Neglecting the change in potential and kinetic energies, determine the work in kJ/minarrow_forwardT-12arrow_forward
- Seventy kilojoules of work is done by each kilogram of fluid passing through an apparatus under steady-flow conditions. In the inlet pipe, which is located 30m above the floor, the specific volume is 3m^3/kg, the pressure is 300 kPa and the velocity is 50 m/s. In the discharge pipe, which is 15 m below the floor, the specific volume is 9 m^3/kg, the pressure is 60 kPa, and the velocity is 150 m/s. Heat loss from the fluid is 3 kJ/kg. Determine the change in internal energy of the fluid passing through the apparatus.arrow_forward* Your answer is incorrect. A pump is used to circulate hot water in a home heating system. Water enters the well-insulated pump operating at steady state at a rate of 0.42 gal/min. The inlet pressure and temperature are 14.7 lbf/in.², and 180°F, respectively; at the exit the pressure is 90 lbf/in.² The pump requires 1/15 hp of power input. Water can be modeled as an incompressible substance with constant density of 60.58 lb/ft3 and constant specific heat of 1 Btu/lb. °R. Neglecting kinetic and potential energy effects, determine the temperature change, in °R, as the water flows through the pump. ΔΤ : = i 0.36 °Rarrow_forwardTurbines, compressors, boilers, condensers, and heat exchangers operate for long periods of time under the same conditions, and they are classified as __________ flow devices.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Power Plant Explained | Working Principles; Author: RealPars;https://www.youtube.com/watch?v=HGVDu1z5YQ8;License: Standard YouTube License, CC-BY