Engineering Electromagnetics
9th Edition
ISBN: 9780078028151
Author: Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher: Mcgraw-hill Education,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 4.10P
A sphere of radios a carries a surface density of pr0 C/m2. (a) Find the absolute potential at the sphere surface (b) A grounded connecting shell of radius b where b > a is now positioned around the charged sphere What is the potential at the inner sphere surface in this ease?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An isolated sphere 10 cm in radius is charged to 500 V. A second isolated but
uncharged sphere of 5 cm radius is touch quickly to the first sphere. Find the potential of
the second sphere.
A sphere has radius of R. The sphere also has a uniform charge of 4Q. There is a point charge of -Q at sphere's center. Derive an equation for E at points where the radius is less then R.
Q1) A charge q = 2µC is placed at a = 0.1m from an infinite grounded conducting plane sheet. Find;i) The total charge induced on the sheet.ii) The force on the charge q.iii) The total work required to remove the charge slowly to an infinite distance from the plane.
Chapter 4 Solutions
Engineering Electromagnetics
Ch. 4 - Given E = Exax + Eyay + Ez3z V/m, where EX, Ey,...Ch. 4 - A positive point charge of magnitude q1 lies at...Ch. 4 - Given E=Epap+Ea+Ez+azV/m, where Ep, E and E2 are...Ch. 4 - An electric field in free space is given by...Ch. 4 - Consider the vector field G = (A/p) aa where A is...Ch. 4 - A electric field in free space is given as...Ch. 4 - Prob. 4.7PCh. 4 - Given E=-xax+yay,(a) find the work involved in...Ch. 4 - An electric field intensity in spherical...Ch. 4 - A sphere of radios a carries a surface density of...
Ch. 4 - At large distances from a dipole antenna (to be...Ch. 4 - Prob. 4.12PCh. 4 - Thee identical point charges of 4 pC each are...Ch. 4 - Given the electric field E=(y+1)ax+(x1)ay+2az find...Ch. 4 - Two uniform lines, 8 nC/m, are located at x=1, z=2...Ch. 4 - A spherically symmetric charge distribution in...Ch. 4 - Uniform surface charge densities of 6 and 2 nC/m2...Ch. 4 - Find the potential at the origin produced by a...Ch. 4 - Volume charge density is given as pv=poer/C/m3,...Ch. 4 - En a certain medium, the electric potential is...Ch. 4 - Prob. 4.21PCh. 4 - A Line charge of infinite length lies along the z...Ch. 4 - Prob. 4.23PCh. 4 - A certain spherically symmetric charge...Ch. 4 - Consider an electric field intensity in free space...Ch. 4 - Let us assume that we have a very thin, square,...Ch. 4 - By performing an appropriate Line integral from...Ch. 4 - Prob. 4.28PCh. 4 - A dipole having a moment P=3ax-5ay+10aznC.m is...Ch. 4 - Prob. 4.30PCh. 4 - A potential field in free space is expressed as...Ch. 4 - Prob. 4.32PCh. 4 - Prob. 4.33PCh. 4 - A sphere of radius a contains volume charge of...Ch. 4 - Four 0.8 nC point charge are located in free space...Ch. 4 - Surface charge of uniform density ps lies on a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Gauss law states that the electric flux passing through any closed surface is equal to Select one: a. the total charge outside that surface b. None of the above c. the total charge enclosed by that surface.arrow_forwardTwo identical Conducting spheres having unequal opposite charges attract each other with a force of 3.15 N when separated by 0.2 m. The sphere experiences a force of repulsion of 0.625 N when they are made to touch for moment and then placed at a distance 0.3 m apart. Find the initial charge on each sphere.arrow_forwardUsing the method of integration, what is the electric field of a uniformly charged thin circular plate (with radius R and total charge Q) at x0 distance from its center? (Consider that the surface of the plate lies in the yz plane) Use the template in the attached pictures to solve the problem.arrow_forward
- Explanation and answer to this question.More than one options may be correct.arrow_forwardINC 6- Two identical ring of radii 1 cm are separated by a distance much greater than their radii as shown in Figure. The rings carry charges of -1 μC and +1 µc uniformly distributed over them. If a point charge of 1 µC moves from the center of the ring on the right to the center of the ring on the left, how much potential energy changes in the point charge-rings system? Note: the potential of a uniformly charged ring of radius a and total charge Q at a point on its perpendicular axis is given by V=k, va'+xarrow_forwardNonearrow_forward
- 5. The cylindrical surface p = 6 cm contains the surface charge density p₁ = 10e-10lzl nC/m². a.) What is the total amount of charge present?arrow_forwardQ1. a) () Describe in words how you might apply Gauss's law to a closed surface to determine the free charge enclosed. Describe the two most useful Gaussian surfaces. Where are they used and what differences must be accounted for when applying them? (ii)arrow_forwardA thin circular ring of radius a=5 mm lies in the x-y plane and is centered at the origin as shown in Figure . Assume that the ring is in air and carries a uniform line charge density The electric potential at point P(0,0,4) cm is equal toarrow_forward
- a long straight cylindrical wire of radius r meter, in a medium of permittivity e is parallel to a horizontal plane conducting sheet. The axis of the wire is it expr metres above the sheet (a) Derive an expression of the capacitance per unit length between the wire and the sheet (b) If r = 0.3 x 10-2 m, h.= 0.12 m find the capacitance per metre length (c) If the potential difference betweenthe wire and sheet is 5 kV, find the magnitude and direction of electric stress in the medium at theupper surface of the sheet at a distance 20 cm from the axis of the wire. Take e = 1/36π x 10-9 F/m [(a) C = 2πe/ln 2h - r/r F/m (b) 0.0127 x 10-9 F/rn (c) 6.85 kV/m acting vertically downward]arrow_forward1.) a charge Q is at the center of the sphere having radius=aa.) Determine the flux density and the electric intensity at the surfaceb.) Find the relationship between D at the surface at radius=a and at radius=b, where a<barrow_forward(al:Determine E caused by the spherical cloud of electrons with a volume charge density of - 1.68 x 10 -18 for 0 10mm. Clearly mention the surfaces, there differential components and write the equation properly by doing all the steps. (b): For the dielectric composition shown in the figure find out its total capacitance.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
Electric Charge and Electric Fields; Author: Professor Dave Explains;https://www.youtube.com/watch?v=VFbyDCG_j18;License: Standard Youtube License