(a)
Interpretation:
It should be determined that how many independent material balance may be written for this system.
Concept introduction:
The independent material balance is when the stoichiometric equation of anyone of them can not be obtained by adding or subtracting multiples of the stoichiometric equation of the others.
The material balances are non independent; if two molecular species are in same ratio to each other wherever they appear and if two atomic species are in same ratio to each other wherever they occur.
(b)
Interpretation:
Calculate
Concept introduction:
In order to understand different variables and components of a system, the analysis of degree of freedom can work better. If the degree of freedom is zero then the problem is specified.
The degree of freedom is explained as:
Where, m is total number of independent stream variables, n is number of independent balances, p is total number of specified terms and s is total number of subsidiary relation.
(c)
Interpretation:
Calculate the difference between amount of acetic acid in the feed mixture and that in the 0.5% mixture and show that it equals the amount that leaves in the 9.6% mixture.
Concept introduction:
In any system, for any conserved quantity like total mass, mass of particular species, momentum, energy etc. the balance can be expressed as follows:
Where, input is feed that enters through system boundary, generation is the content produced within system, output is the content which leaves the system and consumption is the feed consumed within the system while accumulation is the actual product build up in the system.
(d)
Interpretation:
Sketch a flow chart of a two-unit process that might be used to recover nearly pure acetic acid from an acetic acid-water mixture.
Concept introduction:
Actually, when a few process information is given and the calculation is to be done on the basis of the information, then in such conditions, flowchart creation is the best way to deal with. It is formed with the help of boxes and arrows to show the process and outline the process units. The arrow lines can show inputs and outputs which help in better understanding of the process.

Learn your wayIncludes step-by-step video

Chapter 4 Solutions
ELEM PRINC CHEM (LL) W/EBOOK
- A distillation column with 100 kmol/h feed of 50% A and 50% B produces a distillate product with xD = 0.95 and a bottom stream with xbot = 0.04 of the more volatile species A. CMO is valid and the equilibrium data is given by y = 2.4x/1 + 1.4x a) If the feed is saturated liquid, determine the minimum reflux ratio b) If the feed is saturated vapor, determine the minimum reflux ratioarrow_forwardA distillation column with 100 kmol/h feed of 60% A and 40% B produces a distillate product with xD = 0.98 and a bottom stream with xbot = 0.02 of the more volatile species A. CMO is valid and the equilibrium data is given by y = 2.2x/1+1.2x a) If the reflux ratio R is 2, determine (numerically) the composition (y) of the vapor stream entering the top equilibrium plate.__________b) If R = 2 and q = 0.6, determine the liquid flow rate in the stripping section of the column__________c) If q = 0, the minimum reflux ratio isarrow_forwardNatural gas having a specific gravity relative to air of 0.60 and a viscosity of 0.011 cP is flowing through a 6-in. Schedule 40 pipe in which is installed a standard sharp-edged orifice equipped with flange taps. The gas is at 100°F and 20lb/in? abs at the upstream tap. The manometer reading is 46.3 in. of water at 60°F. The ratio of specific heats for natural gas is 1.30. The diameter of the orifice is 2.00 in. Calculate the rate of flow of gas through the line in cubic feet.arrow_forward
- صورة من s94850121arrow_forward11:01 ☑ canvas.ucsd.edu 口 : ... Page 1 > of 2 Q - ZOOM + 4. Consider the two separate sets of measured data for a silt-loam soil measured by Mualem (1976): (1) suction versus water content, and (2) suction versus relative permeability of unsaturated soil, k/ks. Assume that 0s 0.396, 0res = 0.131, and Ks=5.74×10-7 m/s. a. Using the method of least squares in Excel, compute the best-fit values for αNG (kPa¹) and nvg for the van Genuchten (1980) relationship for data set # 1 (assume m = 1-1/nvG). See the example spreadsheet in the homework folder under the files section of Canvas for help in performing this calculation. b. Repeat part (a) and estimate the λ and ac parameters for the Brooks and Corey (1964) SWRC for data set #1. Note that you may need to include an "if" statement at the air entry suction. c. Plot the data for the SWRC versus the fitted van Genuchten (1980) and Brooks and Corey (1964) curves. Which relationship matches the capillary pressure data better (BC or VG)? Explain…arrow_forwardSolve h.w 6arrow_forward
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The





