
Concept explainers
Decide whether a reaction occurs for each of the following. If it does not, write NR after the arrow. If it does, write the balanced molecular equation; then write the net ionic equation.
- a Al(OH)3 + HNO3 →
- b NaBr + HClO4 →
- c CaCl2 + NaNO3 →
- d MgSO4 + Ba(NO3)2 →
(a)

Interpretation:
To predict if a chemical reaction can take place while mixing each of the given set of reagents. If reaction is possible, the balanced molecular equation and net ionic equation has to be found for each reactions.
Concept introduction:
A chemical equation is the figurative representation of chemical reaction. In a chemical equation the reactants are in the left side and the products are in the right side. A balanced chemical equation serves as an easy tool for understanding a chemical reaction. There are mainly three types of chemical equations, molecular equations, complete ionic equation and net ionic equation.
In molecular equations the reactants and products are represented as molecular substances, even though they exist as ions in solution phase. The molecular equation for the reaction between
This equation is helpful in understanding the reactants and products involved in the reaction.
In complete ionic equations the electrolytes are represented as its ions. Soluble compounds exist as ions in solution. Complete ionic equation is helpful in understanding the reaction at ionic level. The complete ionic equation for the reaction between
The solid
In net ionic equations the ions that are common in the reactant and product sides (Spectator ions) are cancelled. These spectator ions are not participating in the chemical reactions. The net ionic equation for the reaction between
Answer to Problem 4.100QP
The complete molecular equation
The net ionic equation
Explanation of Solution
The molecular equation for the reaction between nitric acid and aluminium hydroxide is given below.
In complete ionic equation the electrolytes are represented as its ions. The complete ionic equation for the reaction is given below.
The ions common in the reactant and the product side are cancelled from the total ionic equation to get net ionic equation.
(b)

Interpretation:
To predict if a chemical reaction can take place while mixing each of the given set of reagents. If reaction is possible, the balanced molecular equation and net ionic equation has to be found for each reactions.
Concept introduction:
A chemical equation is the figurative representation of chemical reaction. In a chemical equation the reactants are in the left side and the products are in the right side. A balanced chemical equation serves as an easy tool for understanding a chemical reaction. There are mainly three types of chemical equations, molecular equations, complete ionic equation and net ionic equation.
In molecular equations the reactants and products are represented as molecular substances, even though they exist as ions in solution phase. The molecular equation for the reaction between
This equation is helpful in understanding the reactants and products involved in the reaction.
In complete ionic equations the electrolytes are represented as its ions. Soluble compounds exist as ions in solution. Complete ionic equation is helpful in understanding the reaction at ionic level. The complete ionic equation for the reaction between
The solid
In net ionic equations the ions that are common in the reactant and product sides( Spectator ions) are cancelled. These spectator ions are not participating in the chemical reactions. The net ionic equation for the reaction between
Answer to Problem 4.100QP
No reaction occurs
Explanation of Solution
When sodium bromide and perchloric acid are mixed no reaction occurs.
(c)

Interpretation:
To predict if a chemical reaction can take place while mixing each of the given set of reagents. If reaction is possible, the balanced molecular equation and net ionic equation has to be found for each reactions.
Concept introduction:
A chemical equation is the figurative representation of chemical reaction. In a chemical equation the reactants are in the left side and the products are in the right side. A balanced chemical equation serves as an easy tool for understanding a chemical reaction. There are mainly three types of chemical equations, molecular equations, complete ionic equation and net ionic equation.
In molecular equations the reactants and products are represented as molecular substances, even though they exist as ions in solution phase. The molecular equation for the reaction between
This equation is helpful in understanding the reactants and products involved in the reaction.
In complete ionic equations the electrolytes are represented as its ions. Soluble compounds exist as ions in solution. Complete ionic equation is helpful in understanding the reaction at ionic level. The complete ionic equation for the reaction between
The solid
In net ionic equations the ions that are common in the reactant and product sides( Spectator ions) are cancelled. These spectator ions are not participating in the chemical reactions. The net ionic equation for the reaction between
Answer to Problem 4.100QP
No reaction occurs.
Explanation of Solution
When calcium chloride and sodium nitrate are mixed no reaction occurs.
(d)

Interpretation:
To predict if a chemical reaction can take place while mixing each of the given set of reagents. If reaction is possible, the balanced molecular equation and net ionic equation has to be found for each reactions.
Concept introduction:
A chemical equation is the figurative representation of chemical reaction. In a chemical equation the reactants are in the left side and the products are in the right side. A balanced chemical equation serves as an easy tool for understanding a chemical reaction. There are mainly three types of chemical equations, molecular equations, complete ionic equation and net ionic equation.
In molecular equations the reactants and products are represented as molecular substances, even though they exist as ions in solution phase. The molecular equation for the reaction between
This equation is helpful in understanding the reactants and products involved in the reaction.
In complete ionic equations the electrolytes are represented as its ions. Soluble compounds exist as ions in solution. Complete ionic equation is helpful in understanding the reaction at ionic level. The complete ionic equation for the reaction between
The solid
In net ionic equations the ions that are common in the reactant and product sides( Spectator ions) are cancelled. These spectator ions are not participating in the chemical reactions. The net ionic equation for the reaction between
Answer to Problem 4.100QP
The complete molecular equation
The net ionic equation
Explanation of Solution
The complete molecular equation for the reaction between magnesium sulphate and barium nitrate is given below.
In complete ionic equation the electrolytes are represented as its ions. The complete ionic equation for the reaction is given below.
The ions common in the reactant and the product side are cancelled from the total ionic equation to get net ionic equation.
Want to see more full solutions like this?
Chapter 4 Solutions
Student Solutions Manual for Ebbing/Gammon's General Chemistry
Additional Science Textbook Solutions
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Campbell Essential Biology with Physiology (5th Edition)
Organic Chemistry
Fundamentals of Anatomy & Physiology (11th Edition)
- curved arrows are used to illustrate the flow of electrons. using the provided starting and product structures, draw the cured electron-pushing arrows for thw following reaction or mechanistic steps. be sure to account for all bond-breaking and bond making stepsarrow_forwardUsing the graphs could you help me explain the answers. I assumed that both graphs are proportional to the inverse of time, I think. Could you please help me.arrow_forwardSynthesis of Dibenzalacetone [References] Draw structures for the carbonyl electrophile and enolate nucleophile that react to give the enone below. Question 1 1 pt Question 2 1 pt Question 3 1 pt H Question 4 1 pt Question 5 1 pt Question 6 1 pt Question 7 1pt Question 8 1 pt Progress: 7/8 items Que Feb 24 at You do not have to consider stereochemistry. . Draw the enolate ion in its carbanion form. • Draw one structure per sketcher. Add additional sketchers using the drop-down menu in the bottom right corner. ⚫ Separate multiple reactants using the + sign from the drop-down menu. ? 4arrow_forward
- Shown below is the mechanism presented for the formation of biasplatin in reference 1 from the Background and Experiment document. The amounts used of each reactant are shown. Either draw or describe a better alternative to this mechanism. (Note that the first step represents two steps combined and the proton loss is not even shown; fixing these is not the desired improvement.) (Hints: The first step is correct, the second step is not; and the amount of the anhydride is in large excess to serve a purpose.)arrow_forwardHi I need help on the question provided in the image.arrow_forwardDraw a reasonable mechanism for the following reaction:arrow_forward
- Draw the mechanism for the following reaction: CH3 CH3 Et-OH Et Edit the reaction by drawing all steps in the appropriate boxes and connecting them with reaction arrows. Add charges where needed. Electron-flow arrows should start on the electron(s) of an atom or a bond and should end on an atom, bond, or location where a new bond should be created. H± EXP. L CONT. י Α [1] осн CH3 а CH3 :Ö Et H 0 N о S 0 Br Et-ÖH | P LL Farrow_forward20.00 mL of 0.150 M NaOH is titrated with 37.75 mL of HCl. What is the molarity of the HCl?arrow_forward20.00 mL of 0.025 M HCl is titrated with 0.035 M KOH. What volume of KOH is needed?arrow_forward
- 20.00 mL of 0.150 M NaOH is titrated with 37.75 mL of HCl. What is the molarity of the HCl?arrow_forward20.00 mL of 0.025 M HCl is titrated with 0.035 M KOH. What volume of KOH is needed?arrow_forward20.00 mL of 0.150 M HCl is titrated with 37.75 mL of NaOH. What is the molarity of the NaOH?arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning




