The gravitational force exerted by Sun on Saturn in comparison to the gravitational force exerted by Sun on Earth. Also compare the acceleration of Saturn and Earth when the mass of Saturn is 100 times that of Earth and the semi major axis of Saturn is 10 au.
Answer to Problem 36Q
Solution:
Gravitational forces are equal and acceleration of Saturn is 100 times less than that of Earth.
Explanation of Solution
Given data:
Mass of Saturn is 100 times the mass of Earth.
Distance of Saturn from the Sun is 10 au and distance of Earth from Sun is 1 au.
Formula used:
Newton’s law of universal gravitation is stated by an equation as,
Here,
Explanation:
From Newton’s law of universal gravitation, the gravitational force F is proportional to the mass and inversely proportional to the square of the distance r.
Use Newton’s equation and write the expression for the gravitational force of the Sun on the Earth,
Here, M is the mass of the Sun, m is the mass of the Earth, and r is the distance between Sun and Earth.
Substitute 1 au for r,
Similarly, write the equation for gravitational force of the Sun on Saturn.
Here,
Substitute 100m for
Observe from equations 1 and 2 that the ratio of the gravitational forces between Sun and Earth and Sun and Saturn is 1.
Newton’s law of universal gravitation is stated by an equation as,
Consider that mass
Using Newton’s second law which states that the external force is the product of mass of the object and the acceleration of the object, the above equation can be written as,
So, the above expression can be written as,
Use the relation derived in equation (3) to write the expression for the acceleration of the Earth due to gravitational pull on the Sun of mass M.
Use the relation derived in equation (3) to write the expression for the acceleration of Saturn due to gravitational pull on the Sun of mass M.
Determine the ratio of
Substitute 1 au for r and 10 au for
Conclusion:
From Newton’s law of gravity, the gravitational force is proportional to the mass and inversely proportional to the square of the distance between the planet and the Sun. So, for both Earth and Saturn, the gravitational force of the Sun on them are equal. However, since the acceleration of a planet does not depend on the planet’s mass, but only on the Sun’s mass and the distance between them, the acceleration is 100 times less for Saturn than it is for Earth.
Want to see more full solutions like this?
Chapter 4 Solutions
EBK LOOSE-LEAF VERSION OF UNIVERSE
- 1. A charge of -25 μC is distributed uniformly throughout a spherical volume of radius 11.5 cm. Determine the electric field due to this charge at a distance of (a) 2 cm, (b) 4.6 cm, and (c) 25 cm from the center of the sphere. (a) = = (b) E = (c)Ẻ = = NC NC NCarrow_forward1. A long silver rod of radius 3.5 cm has a charge of -3.9 ис on its surface. Here ŕ is a unit vector ст directed perpendicularly away from the axis of the rod as shown in the figure. (a) Find the electric field at a point 5 cm from the center of the rod (an outside point). E = N C (b) Find the electric field at a point 1.8 cm from the center of the rod (an inside point) E=0 Think & Prepare N C 1. Is there a symmetry in the charge distribution? What kind of symmetry? 2. The problem gives the charge per unit length 1. How do you figure out the surface charge density σ from a?arrow_forward1. Determine the electric flux through each surface whose cross-section is shown below. 55 S₂ -29 S5 SA S3 + 9 Enter your answer in terms of q and ε Φ (a) s₁ (b) s₂ = -29 (C) Φ զ Ερ (d) SA = (e) $5 (f) Sa $6 = II ✓ -29 S6 +39arrow_forward
- No chatgpt pls will upvotearrow_forwardthe cable may break and cause severe injury. cable is more likely to break as compared to the [1] ds, inclined at angles of 30° and 50° to the vertical rings by way of a scaled diagram. [4] I 30° T₁ 3cm 3.8T2 cm 200 N 50° at it is headed due North and its airspeed indicat 240 km/h. If there is a wind of 100 km/h from We e relative to the Earth? [3]arrow_forwardCan you explain this using nodal analysis With the nodes I have present And then show me how many KCL equations I need to write, I’m thinking 2 since we have 2 dependent sourcesarrow_forward
- The shear leg derrick is used to haul the 200-kg net of fish onto the dock as shown in. Assume the force in each leg acts along its axis. 5.6 m. 4 m- B Part A Determine the compressive force along leg AB. Express your answer to three significant figures and include the appropriate units. FAB = Value Submit Request Answer Part B Units ? Determine the compressive force along leg CB. Express your answer to three significant figures and include the appropriate units. FCB= Value Submit Request Answer Part C ? Units Determine the tension in the winch cable DB. Express your answer with the appropriate units. 2marrow_forwardPart A (Figure 1) shows a bucket suspended from a cable by means of a small pulley at C. If the bucket and its contents have a mass of 10 kg, determine the location of the pulley for equilibrium. The cable is 6 m long. Express your answer to three significant figures and include the appropriate units. Figure 4 m B НА x = Value Submit Request Answer Provide Feedback < 1 of 1 T 1 m Units ?arrow_forwardThe particle in is in equilibrium and F4 = 165 lb. Part A Determine the magnitude of F1. Express your answer in pounds to three significant figures. ΑΣΦ tvec F₁ = Submit Request Answer Part B Determine the magnitude of F2. Express your answer in pounds to three significant figures. ΑΣΦ It vec F2 = Submit Request Answer Part C Determine the magnitude of F3. Express your answer in pounds to three significant figures. ? ? lb lb F₂ 225 lb 135° 45° 30° -60°-arrow_forward
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Stars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax