Fundamentals Of Thermal-fluid Sciences In Si Units
Fundamentals Of Thermal-fluid Sciences In Si Units
5th Edition
ISBN: 9789814720953
Author: Yunus Cengel, Robert Turner, John Cimbala
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 4, Problem 36P
To determine

The values of the final temperature and enthalpy.

Expert Solution & Answer
Check Mark

Explanation of Solution

Given:

The mass of the refrigerant (m) is 0.13lbm.

The temperature of the mixture (T) is 30°F.

The quality of the mixture (x) is 80 percent or 0.8.

The spring force (F) is 37 lbf/in.

The diameter of the piston (D) is 12in.

Calculation:

Refer the table A-11E, “Saturated refrigerant-134a–Temperature table”, obtain the properties of refrigerant-134a at temperature of 30°F.

Specific volume of saturated liquid, vf= 0.01143ft3/lbm.

Specific volume of saturated vapor, vg= 4.4286ft3/lbm.

Saturation pressure, P1=Psat=9.868psia.

Write the initial specific volume of the piston-cylinder device (v1).

  v1=vf+x(vgvf)

  v1=0.01143ft3/lbm+(0.80)(4.4286ft3/lbm0.01143ft3/lbm)=3.5452ft3/lbm

Calculate the initial volume of the piston-cylinder device (V1).

  V1=mv1

  V1=(0.13lbm)(3.5452ft3/lbm)=0.4609ft3

Write the final volume (V2) for 50% increase in the volume.

  V2=1.5V1

  V2=1.5(0.4609ft3)=0.6913ft3

Write the area of the piston (Ap).

  Ap=πD24

Here, diameter of the piston is D.

Substitute 12in. for D in Equation (IV).

  Ap=π(12in.)24=π(12in.×1ft12in.)24=0.7854ft2

Write the distance that the piston (Δx) slides between the initial and final circumstances.

  Δx=ΔVAp=V2V1Ap

  Δx=0.6913ft30.4609ft30.7854ft2=0.2304ft30.7854ft2=0.2934ft

Here, change in volume is ΔV.

Write the difference in pressure (ΔP).

  ΔP=ΔFAp=kΔxAp

  ΔP=(37lbf/in.)(0.2934ft)(0.7854ft2)=(37lbf/in.)(0.2934ft×12in.1ft)(0.7854ft2×(12in.12ft)2)=1.152lbf/in.2=1.152psia

Here, change in force is ΔF, and spring constant is k.

Write the final pressure of the piston-cylinder device (P2).

  P2=P1+ΔP

  P2=9.868psia+1.152psia=11.02psia

Write the final specific volume of the piston-cylinder device (v2).

  v2=V2m

  v2=0.6913ft30.13lbm=5.318ft3/lbm

Refer the table A-13E, “Superheated refrigerant-134a table”, obtain the value of the final temperature and final enthalpy at final pressure of 11.02psia and final specific volume of 5.318ft3/lbm as 105°F and 125Btu/lbm.

Thus, the values of the final temperature and enthalpy are 105°F and 125Btu/lbm respectively.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
2. Jojoba oil is flowing through a ¾-nom stainless steel pipe at a flow rate of 1,850 lbm/h. After the velocity profile in the pipe is fully developed, the oil enters a heater, as shown in Figure P5.7. The length of the heater section is 5 ft. The properties of the jojoba oil at the average temperature in the heater section are given in Table P5.7. Determine the convective heat transfer coefficient inside the heater section of the pipe. ¾ nom stainless steel pipe Heater section L=5ft Fig. P5.7 TABLE P5.7 Thermophysical Properties of Jojoba Oil at the Average Temperature in the Heater P (lbm/ft³) 68.671 (Btu/lbm-R) 0.30339 μ (lbm/ft-s) 0.012095 k (Btu/h-ft-°F) 0.077424
1. Water is flowing inside of a 3-std type K copper tube at a flow rate of 1.2 kg/s. The average temperature of the water is 50°C. Cold, dry air at a temperature of 5°C and atmospheric pressure flows outside of the tube in cross flow with a velocity of 85 m/s. Determine the UA product for this tube under clean conditions.
Hints: Find the closed loop transfer function and then plot the step response for diFerentvalues of K in MATLAB. Show step response plot for different values of K.   Auto Controls Show solutions and provide matlab code NO COPIED ANSWERS OR WILL REPORT!!!!

Chapter 4 Solutions

Fundamentals Of Thermal-fluid Sciences In Si Units

Ch. 4 - Prob. 11PCh. 4 - Prob. 12PCh. 4 - Prob. 13PCh. 4 - Does hfg change with pressure? How? Ch. 4 - Prob. 15PCh. 4 - Prob. 16PCh. 4 - Which process requires more energy: completely...Ch. 4 - In the absence of compressed liquid tables, how is...Ch. 4 - In 1775, Dr. William Cullen made ice in Scotland...Ch. 4 - Complete this table for H2O: Ch. 4 - Prob. 21PCh. 4 - Complete this table for H2O: Ch. 4 - Prob. 24PCh. 4 - Prob. 26PCh. 4 - Complete this table for refrigerant-134a: Ch. 4 - A 1.8-m3 rigid tank contains steam at 220°C....Ch. 4 - Prob. 29PCh. 4 - R-134a, whose specific volume is 0.6243 ft3/lbm,...Ch. 4 - Prob. 31PCh. 4 - Prob. 32PCh. 4 - Refrigerant-134a at 200 kPa and 25°C flows through...Ch. 4 - The average atmospheric pressure in Denver...Ch. 4 - Prob. 35PCh. 4 - Prob. 36PCh. 4 - One pound-mass of water fills a 2.4264-ft3...Ch. 4 - Prob. 38PCh. 4 - Prob. 39PCh. 4 - Prob. 40PCh. 4 - Prob. 41PCh. 4 - Prob. 42PCh. 4 - Water initially at 200 kPa and 300°C is contained...Ch. 4 - Saturated steam coming off the turbine of a steam...Ch. 4 - Water in a 5-cm-deep pan is observed to boil at...Ch. 4 - A cooking pan whose inner diameter is 20 cm is...Ch. 4 - Prob. 47PCh. 4 - Prob. 48PCh. 4 - Prob. 49PCh. 4 - Prob. 50PCh. 4 - A piston–cylinder device contains 0.005 m3 of...Ch. 4 - Prob. 53PCh. 4 - Prob. 54PCh. 4 - Prob. 55PCh. 4 - Prob. 57PCh. 4 - Prob. 58PCh. 4 - Prob. 59PCh. 4 - Prob. 60PCh. 4 - Prob. 61PCh. 4 - A rigid vessel contains 8 kg of refrigerant-134a...Ch. 4 - Prob. 63PCh. 4 - A piston–cylinder device initially contains 50 L...Ch. 4 - Prob. 65PCh. 4 - Prob. 66PCh. 4 - Prob. 67PCh. 4 - Prob. 68PCh. 4 - Prob. 69PCh. 4 - Prob. 70PCh. 4 - Prob. 71PCh. 4 - Prob. 72PCh. 4 - The air in an automobile tire with a volume of...Ch. 4 - The air in an automobile tire with a volume of...Ch. 4 - Prob. 75PCh. 4 - Prob. 76PCh. 4 - Prob. 77PCh. 4 - Prob. 78PCh. 4 - What is the principle of corresponding states? Ch. 4 - Prob. 80PCh. 4 - Prob. 81PCh. 4 - Prob. 82PCh. 4 - Prob. 84PCh. 4 - Prob. 85PCh. 4 - Prob. 86PCh. 4 - Prob. 87PCh. 4 - What is the percentage of error involved in...Ch. 4 - Prob. 89PCh. 4 - Prob. 90PCh. 4 - Prob. 91PCh. 4 - Prob. 92PCh. 4 - Prob. 93RQCh. 4 - Prob. 94RQCh. 4 - A tank contains argon at 600°C and 200 kPa gage....Ch. 4 - Prob. 96RQCh. 4 - Prob. 97RQCh. 4 - Prob. 98RQCh. 4 - Prob. 99RQCh. 4 - Prob. 100RQCh. 4 - Prob. 101RQCh. 4 - Prob. 102RQCh. 4 - A 4-L rigid tank contains 2 kg of saturated...Ch. 4 - The gage pressure of an automobile tire is...Ch. 4 - Prob. 105RQCh. 4 - Prob. 106RQCh. 4 - Prob. 107RQCh. 4 - Prob. 108RQCh. 4 - Prob. 109RQCh. 4 - Prob. 110RQCh. 4 - Prob. 111RQCh. 4 - Prob. 112RQ
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
First Law of Thermodynamics, Basic Introduction - Internal Energy, Heat and Work - Chemistry; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=NyOYW07-L5g;License: Standard youtube license