Concept explainers
(a)
To show that the frequency of the electron’s orbital motion is
(a)
Answer to Problem 31P
It is showed that the frequency of the electron’s orbital motion is
Explanation of Solution
Write the expression for the conservation of
Here,
Rewrite the above equation for
Write the equation for the frequency of the electron.
Here,
Put equation (I) in the above equation.
Write the equation for the radius of an orbit.
Here,
Put the above equation in equation (II).
Write the equation for the Bohr radius.
Here,
Put the above equation in equation (III).
Conclusion:
Therefore, it is showed that the frequency of the electron’s orbital motion is
(b)
To show that frequency of the photon emitted when an electron jumps from an outer to inner orbit can be written as
(b)
Answer to Problem 31P
It is showed that frequency of the photon emitted when an electron jumps from an outer to inner orbit can be written as
Explanation of Solution
Write the equation for the energy of the photon emitted.
Here,
Write the equation for the energy of the photon emitted when an electron jumps from an outer to inner orbit.
Here,
Compare the above two equations to write the expression for
Put the equation for Bohr radius in the above equation.
Write the relationship between
Put the above equation in equation (V).
Conclusion:
For
Therefore, it is showed that frequency of the photon emitted when an electron jumps from an outer to inner orbit can be written as
(c)
The conclusion regarding the frequency of the emitted
(c)
Answer to Problem 31P
Frequency of the emitted radiation is in between the initial and the final orbital frequency and the frequency of the emitted radiation becomes the orbital frequency as
Explanation of Solution
The expression for the orbital frequency of the electron is found in part (a). The equation for the frequency of the emitted photon is found in part (b). Comparison of the two equations shows that the frequency of the emitted radiation is in between the initial orbital frequency and the final orbital frequency.
As
Conclusion:
Thus, the frequency of the emitted radiation is in between the initial and the final orbital frequency and the frequency of the emitted radiation becomes the orbital frequency as
Want to see more full solutions like this?
Chapter 4 Solutions
Modern Physics
- look at answer show all work step by steparrow_forwardLook at the answer and please show all work step by steparrow_forward3. As a woman, who's eyes are h = 1.5 m above the ground, looks down the road sees a tree with height H = 9.0 m. Below the tree is what appears to be a reflection of the tree. The observation of this apparent reflection gives the illusion of water on the roadway. This effect is commonly called a mirage. Use the results of questions 1 and 2 and the principle of ray reversibility to analyze the diagram below. Assume that light leaving the top of the tree bends toward the horizontal until it just grazes ground level. After that, the ray bends upward eventually reaching the woman's eyes. The woman interprets this incoming light as if it came from an image of the tree. Determine the size, H', of the image. (Answer 8.8 m) please show all work step by steparrow_forward
- A piece of silicon semiconductor has length L=0.01cm and cross-section in a square shape with an area of A=5×10−4cm2 . The semiconductor is doped with 1012cm−3 Phosphorus atoms and 1017cm−3 Boron atoms. An external electric field E=1.5×104N/C is applied to the silicon piece along the length direction, through the cross section. What is the total current in the silicon at T=300K? Assume the mobility of silicon is 1400cm2V−1s−1 for electrons and 450cm2V−1s−1 for holes, respectively. Assume the intrinsic carrier concentration in silicon is 1010cm−3 . Give your answer in mA, rounded to 3 significant figures. Just enter the number, nothing else.arrow_forwardAn impurity with a charge of 2e is placed in a three-dimensional metal. Assume that the Friedel sum rule holds for this system, and only the scattering phase shifts from the electrons contribute to this sum (we don't need to consider ion phase shifts). This metal has a spherical Fermi surface with Fermi wave vector kF . The only degeneracy for the electrons at the Fermi surface is spin (two-fold) and angular momentum ( 2l+1 for each angular momentum l ). Ignore scattering for l>2 and assume that the scattering doesn't depend on the spin degree of freedom. Denote the scattering phase shift at the Fermi wave vector in the l -th angular momentum channel as δl(kF) . If δ0(kF)=11π31 , and δ1(kF)=π29 , what is δ2(kF)? Round your answer to three significant figures. Just enter the number, nothing else.arrow_forwardA pilot with a mass of 75 kg is flying an airplane at a true airspeed of 55m/s in air that is still relative to the ground. The pilot enters a coordinated turn of constant bank angle and constant altitude, and the pilot experiences an effective weight of 1471.5N normal to the wings of the plane. What is the rate of turn (in degrees per second) for the aircraft? Round your answer to three significant figures. Just enter the number, nothing else.arrow_forward
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax