
Divide and show the steps of Problem Example 9.3 in chapter 9 from the textbook into the format of “Given”, “Find” and “Solution” sections.

Answer to Problem 27P
The mass of water stored after 5 minutes in tank (a) is 600 kg and in tank (b) is 300 kg, and the time taken to fill tank (a) and tank (b) of volume
Explanation of Solution
Given:
Volume of each tank
Density of water
Rate at which fluid enters tank is
Find:
The mass of water stored after 5 minutes in each tanks and also find the time taken to fill the tanks of volume
Solution:
Refer figure 1. Water enters the tank (a) at rate of
Formula for the relationship of conservation of mass is,
Consider the expression for rate of accumulation or depletion of fluid in the control volume is,
Substitute equation (2) in equation (1).
In figure 1, there is no disposal of water from the tank through any opening. Therefore, the rate at which the fluid leaves the control volume is zero. Therefore, equation (3) becomes,
As the water is filled inside the control volume at rate of
Formula to determine how much mass each tank can hold is,
Formula to determine the time taken to fill the tank (a) is,
Convert the unit of time taken from seconds to minutes.
Refer to Figure 2. Water enters the tank (b) at rate of
From equation (3),
As the water is filled inside the tank at rate of
Formula to determine the time taken to fill the tank (b) is,
Convert the unit of time taken from seconds to minutes.
Conclusion:
Hence, the mass of water stored after 5 minutes in tank (a) is 600 kg and in tank (b) is 300 kg, and the time taken to fill tank (a) and tank (b) of volume
Want to see more full solutions like this?
Chapter 4 Solutions
EBK ENGINEERING FUNDAMENTALS: AN INTROD
- Show step by step solutionarrow_forwardDraw the shear and the moment diagrams for each of the frames below. If the frame is statically indeterminate the reactions have been provided. Problem 1 (Assume pin connections at A, B and C). 30 kN 2 m 5 m 30 kN/m B 60 kN 2 m 2 m A 22 CO Carrow_forwardThis is an old exam practice question. The answer key says the answer is Pmax = 52.8kN but I am confused how they got that.arrow_forward
- F12-45. Car A is traveling with a constant speed of 80 km/h due north, while car B is traveling with a constant speed of 100 km/h due east. Determine the velocity of car B relative to car A. pload Choose a File Question 5 VA - WB VBA V100 111413 + *12-164. The car travels along the circular curve of radius r = 100 ft with a constant speed of v = 30 ft/s. Determine the angular rate of rotation è of the radial liner and the magnitude of the car's acceleration. Probs. 12-163/164 pload Choose a File r = 400 ft 20 ptsarrow_forwardPlease show step by step how to solve this and show formulararrow_forwardPlease solve this question step by step with dia gramarrow_forward
- Use the second picture to answer the question, Thank you so much for your help!arrow_forwardP6.16 A compound shaft (Figure P6.16) consists of a titanium alloy [G= 6,200 ksi] tube (1) and a solid stainless steel [G= 11,500 ksi] shaft (2). Tube (1) has a length L₁ = 40 in., an outside diameter D₁ = 1.75 in., and a wall thickness t₁ = 0.125 in. Shaft (2) has a length 42 = 50 in. and a diameter d₂ = 1.25 in. If an external torque TB = 580 lb ft acts at pulley B in the direction shown, calculate the torque Tcrequired at pulley C so that the rotation angle of pulley Crelative to A is zero. B Te (2) TB (1) FIGURE P6.16arrow_forward7.43 Neglecting head losses, determine what horsepower the pump must deliver to produce the flow as shown. Here, the elevations at points A, B, C, and D are 124 ft, 161 ft, 110 ft, and 90 ft, respectively. The nozzle area is 0.10 ft². B Nozzle Water C Problem 7.43arrow_forward
- A 1.8m x 1.8m footing is located at a depth of 1 m below the ground surface in a deep deposit of compacted sand (f'= 33 , f' = 28 , γ = 17.5 kN/m). Calculate the ultimate net bearing capacity considering several factors (e.g., shape, depth, and inclination) when the groundwater table is located (a) at 5 m below the footing base, (b) at the ground surface, (c) at the footing base, and (d) at 1.5 m below the footing base. Also, explain the effects of the groundwater levels in the bearing capacities of the footing with your own words. If the information is not given for the calculation, please assume it reasonably.arrow_forward7.18 Determine the discharge in the pipe and the pressure at point B. Neglect head losses. Assume α = 1.0 at all locations. 1.5 m Water B 3.5 m 40 cm diameter -20 cm diameter nozzle Problem 7.18arrow_forwardA 200-lb block is at rest on a 30° inclined plane. The coefficient of friction between the block and the inclined plane is 0.20. Compute the value of a horizontal force P that will cause motion to impend the block up the inclined plane. 200 lb P 30°arrow_forward
- Engineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage LearningResidential Construction Academy: House Wiring (M...Civil EngineeringISBN:9781285852225Author:Gregory W FletcherPublisher:Cengage Learning

