
Concept explainers
Mark each statement True or False. Justify each answer. (If true, cite appropriate facts or theorems. If false, explain why or give a counterexample that shows why the statement is not true in every case.) In parts (a)-(f), v1, ..., vp are
- a. The set of all linear combinations of v1, ..., vp is a vector space.
- b. If {v1, ..., vp−1} spans V, then S spans V.
- c. If {v1, ..., vp−1} is linearly independent, then so is S.
- d. If S is linearly independent, then S is a basis for V.
- e. If Span S = V, then some subset of S is a basis for V.
- f. If dim V = p and Span, S = V, then S cannot be linearly dependent.
- g. A plane in ℝ3 is a two-dimensional subspace.
- h. The nonpivot columns of a matrix are always linearly dependent.
- i. Row operations on a matrix A can change the linear dependence relations among the rows of A.
- j. Row operations on a matrix can change the null space.
- k. The rank of a matrix equals the number of nonzero rows.
- l. If an m × n matrix A is row equivalent to an echelon matrix U and if U has k nonzero rows, then the dimension of the solution space of Ax = 0 is m − k.
- m. If B is obtained from a matrix A by several elementary row operations, then rank B = rank A.
- n. The nonzero rows of a matrix A form a basis for Row A.
- ○. If matrices A and B have the same reduced echelon form, then Row A = Row B.
- p. If H is a subspace of ℝ3, then there is a 3 × 3 matrix A such that H = Col A.
- q. If A is m × n and rank A = m, then the linear transformation x ↦ Ax is one-to-one.
- r. If A is m × n and the linear transformation x ↦ Ax is onto, then rank A = m.
- s. A change-of-coordinates matrix is always invertible.
- t. If B = {b1, ..., bn} and C = {c1, ..., cn} are bases for a vector space V, then the jth column of the change-of-coordinates matrix
is the coordinate vector [cj]B.
a.

To find: Whether the statement “The set of all linear combinations of
Answer to Problem 1SE
The statement is true.
Explanation of Solution
Here, the given vectors are
The span {
Thus, the linear combinations of
Hence, the statement is true.
b.

To find: Whether the statement “If
Answer to Problem 1SE
The statement is true.
Explanation of Solution
The set S is
It is given that the set
That is, every element in the vector space
Here, the set
The smaller set
If the vector space V is spanned by
Hence, the statement is true.
c.

To find: Whether the statement “If
Answer to Problem 1SE
The statement is false.
Explanation of Solution
If
Therefore, it does not imply that S is linearly independent.
Hence, the statement is false.
d.

To find: Whether the statement “If S is linearly independent then S is a basis for V” is true or false.
Answer to Problem 1SE
The statement is false.
Explanation of Solution
A set of vectors
1. The set of vectors
2. The set
It can be seen that the second condition is not satisfied.
Hence, the statement is false.
e.

To find: Whether the statement “If
Answer to Problem 1SE
The statement is true.
Explanation of Solution
It is given that the vector space V is spanned by S, which is nonzero set.
Suppose the set S is linearly independent then, the set S form a basis for V.
Suppose the set S is linearly dependent then, some subset of S linearly independent and which spans V.
That is, some subset of S form a basis for V.
Hence, the statement is true.
f.

To find: Whether the statement “If
Answer to Problem 1SE
The statement is true.
Explanation of Solution
It is given that
Here,
Which implies the
Hence, the statement is false.
g.

To find: Whether the statement “A plane in
Answer to Problem 1SE
The statement is false.
Explanation of Solution
Every plane in
Sometimes plane in
Hence, the statement is false.
h.

To find: Whether the statement “The non-pivot columns of a matrix are always linearly dependent” is true or false.
Answer to Problem 1SE
The statement is false.
Explanation of Solution
Consider the matrix
Here non-pivot columns are linearly independent.
Hence, the statement is false.
i.

To find: Whether the statement “Row operations on a matrix A can change the linear dependence relations among the rows of A” is true or false.
Answer to Problem 1SE
The statement is true.
Explanation of Solution
Row operations on matrix
Hence, the statement is true.
j.

To find: Whether the statement “Row operations on a matrix can change the null space” is true or false.
Answer to Problem 1SE
The statement is false.
Explanation of Solution
Row operations do not change the solution set of the system
Therefore, row operations do not change the null space.
Hence, the statement is false.
k.

To find: Whether the statement “The rank of a matrix equals the number of nonzero rows” is true or false.
Answer to Problem 1SE
The statement is false.
Explanation of Solution
The rank of a matrix A is the dimension of the column space of A.
The dimension of column space of A is the number of pivot columns in A.
Therefore, the rank of matrix equals the number of pivot columns.
Consider the matrix
The above matrix has 2 rows but rank of the matrix is 1.
Hence, the statement is false.
l.

To find: Whether the statement “If an
Answer to Problem 1SE
The statement is false.
Explanation of Solution
If U has k nonzero rows then,
According to the Rank Theorem, the rank of an
Hence, the statement is false.
m.

To find: Whether the statement “If B is obtained from a matrix A by several elementary row operations, then
Answer to Problem 1SE
The statement is true.
Explanation of Solution
Elementary row operations does not change the number of pivot columns and hence, does not change the rank of a matrix.
Therefore, the rank of matrix B will be same as the rank of matrix A.
Hence, the statement is true.
n.

To find: Whether the statement “The nonzero rows of a matrix A form a basis for Row A” is true or false.
Answer to Problem 1SE
The statement is false.
Explanation of Solution
To form a basis for A, the rows have to span A and should also be linearly independent.
The nonzero rows of a matrix A span Row A but that does not guarantee that they are linearly independent.
Hence, the statement is false.
o.

To find: Whether the statement “If matrices A and B have the same reduced echelon form, then
Answer to Problem 1SE
The statement is true.
Explanation of Solution
The nonzero rows of the echelon form of a matrix, form a basis for the row space of that matrix.
If the echelon form for two matrices is same, then the basis for the row spaces is also same.
Since, row spaces are vector spaces and if two vector spaces have same basis, then the vector spaces are same.
Hence, the statement is true.
p.

To find: Whether the statement “If H is a subspace of
Answer to Problem 1SE
The statement is true.
Explanation of Solution
If H is a zero, 1, 2, or 3 dimensional subspace of
The basis of H will then be in the column space of A.
Therefore,
Hence, the statement is true.
q.

To find: Whether the statement “If A is
Answer to Problem 1SE
The statement is false.
Explanation of Solution
Here the matrix A is linear transformation from
The transformation
Here, rank of the matrix is A thus, by the rank nullity theorem null space of
Hence, the statement is false.
r.

To find: Whether the statement “If A is
Answer to Problem 1SE
The statement is true.
Explanation of Solution
Here the matrix A is linear transformation from
If the transformation is onto then,
The rank of a matrix A is the dimension of the column space of A.
Therefore, the rank of A is m.
Hence, the statement is true.
s.

To find: Whether the statement “A change-of-coordinate matrix is always invertible” is true or false.
Answer to Problem 1SE
The statement is true.
Explanation of Solution
The columns of
The matrix
Hence, the statement is true.
t.

To find: Whether the statement “If
Answer to Problem 1SE
The statement is false.
Explanation of Solution
The jth column of the change-of-coordinates matrix
Hence, the statement is false.
Want to see more full solutions like this?
Chapter 4 Solutions
Linear Algebra and Its Applications, Books a la Carte Edition (5th Edition)
Additional Math Textbook Solutions
Thinking Mathematically (6th Edition)
Pre-Algebra Student Edition
Elementary Statistics
University Calculus: Early Transcendentals (4th Edition)
Calculus: Early Transcendentals (2nd Edition)
- Jamal wants to save $48,000 for a down payment on a home. How much will he need to invest in an account with 11.8% APR, compounding daily, in order to reach his goal in 10 years? Round to the nearest dollar.arrow_forwardr nt Use the compound interest formula, A (t) = P(1 + 1)". An account is opened with an intial deposit of $7,500 and earns 3.8% interest compounded semi- annually. Round all answers to the nearest dollar. a. What will the account be worth in 10 years? $ b. What if the interest were compounding monthly? $ c. What if the interest were compounded daily (assume 365 days in a year)? $arrow_forwardKyoko has $10,000 that she wants to invest. Her bank has several accounts to choose from. Her goal is to have $15,000 by the time she finishes graduate school in 7 years. To the nearest hundredth of a percent, what should her minimum annual interest rate be in order to reach her goal assuming they compound daily? (Hint: solve the compound interest formula for the intrerest rate. Also, assume there are 365 days in a year) %arrow_forward
- 3:56 wust.instructure.com Page 0 Chapter 5 Test Form A of 2 - ZOOM + | Find any real numbers for which each expression is undefined. 2x 4 1. x Name: Date: 1. 3.x-5 2. 2. x²+x-12 4x-24 3. Evaluate when x=-3. 3. x Simplify each rational expression. x²-3x 4. 2x-6 5. x²+3x-18 x²-9 6. Write an equivalent rational expression with the given denominator. 2x-3 x²+2x+1(x+1)(x+2) Perform the indicated operation and simplify if possible. x²-16 x-3 7. 3x-9 x²+2x-8 x²+9x+20 5x+25 8. 4.x 2x² 9. x-5 x-5 3 5 10. 4x-3 8x-6 2 3 11. x-4 x+4 x 12. x-2x-8 x²-4 ← -> Copyright ©2020 Pearson Education, Inc. + 5 4. 5. 6. 7. 8. 9. 10. 11. 12. T-97arrow_forwardProblem #5 Suppose you flip a two sided fair coin ("heads" or "tails") 8 total times. a). How many ways result in 6 tails and 2 heads? b). How many ways result in 2 tails and 6 heads? c). Compare your answers to part (a) and (b) and explain in a few sentences why the comparison makes sense.arrow_forwardA local company has a 6 person management team and 20 employees. The company needs to select 3 people from the management team and 7 employees to attend a regional meeting. How many different possibilities are there for the group that can be sent to the regional meeting?arrow_forward
- I have 15 outfits to select from to pack for my business trip. I would like to select three of them to pack in my suitcase. How many packing possibilities are there?arrow_forwardThere are 15 candidates running for any of 5 distinct positions on the local school board. In how many different ways could the 5 positions be filled?arrow_forwardCelina is picking a new frame for a custom piece of artwork. She has to select a frame size, material, and color. There are four different frame sizes, three different frame materials, and six different frame colors. She must chose one option only from each category. How many different possible frames could Celina pick from?arrow_forward
- A research study in the year 2009 found that there were 2760 coyotes in a given region. The coyote population declined at a rate of 5.8% each year. How many fewer coyotes were there in 2024 than in 2015? Explain in at least one sentence how you solved the problem. Show your work. Round your answer to the nearest whole number.arrow_forwardAnswer the following questions related to the following matrix A = 3 ³).arrow_forwardExplain the following termsarrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageElementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning


